References


59. L. Chang et al., “A 5.3GHz 8T-SRAM with Operation Down to 0.41V in 65 nm CMOS,” IEEE Symposium on VLSI Circuits, 252–253 (June 2007).
Index

A
alternating phase-shifted mask (altPSM), 9
auto-router, 99

D
design impact, 1
design rule checking (DRC), 8
device parasitics, 97
directed self-assembly (DSA), 28

E
eight-transistor bitcell (8T bitcell), 95
electromigration, 98

F
fin-based field effect transistor (FinFET), 89

G
grating-based design, 88

H
hard IP, 88
hardware description language (HDL), 88

I
interconnect delay, 99
intrinsic gain, 98

L
lithography-friendly design (LFD), 8
local interconnect, 90
local loop, 99
logic synthesis, 88

O
odd cycles, 10
optical proximity correction (OPC), 6

P
physical synthesis, 89
process window, 12

S
self-aligned double patterning (SADP), 21
self-aligned quadruple patterning (SAQP), 27
six-transistor bitcell (6T bitcell), 95
standard cell, 33
static random access memory (SRAM), 88, 93
sub-resolution assist feature (SRAF), 12
sub-resolution patterning, 1

T
transistor mismatch, 96

V
via redundancy, 99
Lars Liebmann, now with GLOBALFOUNDRIES, received B.S. and M.S. degrees in Nuclear Engineering and a Ph.D. in Engineering Physics from Rensselaer Polytechnic Institute, Troy, NY. He originally joined IBM in 1991, where he found his niche in developing design solutions for layout-intensive resolution enhancement techniques, such as alternating phase-shifted mask (altPSM) lithography and sub-resolution assist features (SRAFs). This work naturally lead Liebmann to focus on lithography-friendly design (LFD) for efficient implementation of increasingly complex resolution enhancement techniques (RET). The need to negotiate tradeoffs between designers and process engineers ultimately spawned the engineering discipline that is now called design-technology co-optimization (DTCO). After his transition to GLOBALFOUNDRIES, Dr. Liebmann continues to focus on DTCO as a means of defining robust technology architectures in the early stages of leading-edge technology nodes. He holds over 60 patents, has published over 40 technical papers, and has received IBM’s Corporate and Outstanding Technical Achievement awards. For his work on LFD, Dr. Liebmann was appointed a Distinguished Engineer of IBM and a Fellow of SPIE.

Kaushik Vaidyanathan received a B.E. degree in Electronics and Communication Engineering from the Madras Institute of Technology at Chennai, India, and M.S. and Ph.D. degrees in Electrical and Computer Engineering from Carnegie Mellon University (CMU), Pittsburgh, PA. He started as an application-specific integrated circuit (ASIC) physical-design engineer at IBM in 2007. Subsequently, in 2009, he started his Ph.D. research under the supervision of Prof. Larry Pileggi at CMU, exploring design techniques that enable cost-effective and efficient SoC design below N20. Along with his collaborators at IBM and CMU he developed the holistic design technology co-optimization process and demonstrated its efficacy at N14. First as a Ph.D. student and then a postdoc at CMU, he and his collaborators developed a split-fabrication-based design flow to manufacture trusted integrated circuits. Since 2015, Dr. Vaidyanathan works as a Research Scientist at Intel Labs, where he explores the implications of using emerging devices, interconnects, and process integration methods on microprocessor and system-on-chip designs.
Lawrence Pileggi is the Tanoto Professor of Electrical and Computer Engineering at Carnegie Mellon University and has previously held positions at Westinghouse Research and Development and the University of Texas at Austin. He received his Ph.D. in Electrical and Computer Engineering from CMU in 1989. He has consulted for various semiconductor and EDA companies and was a co-founder of Fabbrix, Inc. (acquired by PDF Solutions) and Extreme DA (acquired by Synopsys). His research interests include various aspects of digital and analog integrated-circuit design and design methodologies. He has received various awards, including Westinghouse Corporation's highest engineering achievement award, a Presidential Young Investigator award from the National Science Foundation, Semiconductor Research Corporation (SRC) Technical Excellence Awards in 1991 and 1999, the FCRP inaugural Richard A. Newton GSRC Industrial Impact Award, the SRC Aristotle award in 2008, the 2010 IEEE Circuits and Systems Society Mac Van Valkenburg Award, the ACM/IEEE A. Richard Newton Technical Impact Award in Electronic Design Automation in 2011, the Carnegie Institute of Technology B.R. Teare Teaching Award for 2013, and the 2015 Semiconductor Industry Association (SIA) University Researcher Award. He is a co-author of *Electronic Circuit and System Simulation Methods* (McGraw-Hill, 1995) and *IC Interconnect Analysis* (Kluwer, 2002). He has published over 300 conference and journal papers and holds 36 US patents. He is a fellow of IEEE.