Design Technology Co-Optimization in the Era of Sub-Resolution IC Scaling
Tutorial Texts Series

- Design Technology Co-Optimization in the Era of Sub-Resolution IC Scaling, Lars W. Liebmann, Kaushik C. Vaidyanathan, and Lawrence Pileggi, Vol. TT104
- Special Functions for Optical Science and Engineering, Vasudevan Lakshminarayanan and Srinivasa Varadharajan, Vol. TT103
- Discrimination of Subsurface Unexploded Ordnance, Kevin O’Neill, Vol. TT102
- Introduction to Metrology Applications in IC Manufacturing, Bo Su, Eric Solecky, and Alok Vaid, Vol. TT101
- Introduction to Liquid Crystals for Optical Design and Engineering, Sergio Restaino and Scott Teare, Vol. TT100
- Design and Implementation of Autostereoscopic Displays, Byoungho Lee, Soon-gi Park, Keeloon Hong, and Jisoo Hong, Vol. TT99
- Ocean Sensing and Monitoring: Optics and Other Methods, Weilin Hou, Vol. TT98
- Interferometry for Precision Measurement, Peter Langenbeck, Vol. TT94
- Modeling the Imaging Chain of Digital Cameras, Robert D. Fiete, Vol. TT92
- Bioluminescence and Fluorescence for In Vivo Imaging, Lubov Brovko, Vol. TT91
- Polarization of Light with Applications in Optical Fibers, Arun Kumar and Ajoy Ghatak, Vol. TT90
- Digital Fourier Optics: A MATLAB Tutorial, David G. Voeltz, Vol. TT89
- Optical Design of Microscopes, George Seward, Vol. TT88
- Nanotechnology: A Crash Course, Raúl J. Martin-Palma and Akhlesh Lakhtakia, Vol. TT86
- Direct Detection LADAR Systems, Richard Richmond and Stephen Cain, Vol. TT85
- Optical Design: Applying the Fundamentals, Max J. Riedl, Vol. TT84
- Fundamentals of Polarimetric Remote Sensing, John Schott, Vol. TT81
- The Design of Plastic Optical Systems, Michael P. Schaub, Vol. TT80
- Fundamentals of Photonics, Chandra Roychoudhuri, Vol. TT79
- Matrix Methods for Optical Layout, Gerhard Kloos, Vol. TT77
- Fundamentals of Infrared Detector Materials, Michael A. Kinch, Vol. TT76
- Bioluminescence for Food and Environmental Microbiological Safety, Lubov Brovko, Vol. TT74
- Introduction to Image Stabilization, Scott W. Teare and Sergio R. Restaino, Vol. TT73
- Introduction to Confocal Fluorescence Microscopy, Michiel Müller, Vol. TT69
- Artificial Neural Networks: An Introduction, Kevin L. Priddy and Paul E. Keller, Vol. TT68
- Basics of Code Division Multiple Access (CDMA), Raghuvueer Rao and Sohail Dianat, Vol. TT67
- Optical Imaging in Projection Microlithography, Alfred Kwok-Kit Wong, Vol. TT66
- Metrics for High-Quality Specular Surfaces, Lionel R. Baker, Vol. TT65
- Field Mathematics for Electromagnetics, Photonics, and Materials Science, Bernard Maxum, Vol. TT64

(For a complete list of Tutorial Texts, see http://spie.org/tt.)
Design Technology Co-Optimization in the Era of Sub-Resolution IC Scaling

Lars W. Liebmann
Kaushik C. Vaidyanathan
Lawrence Pileggi

Tutorial Texts in Optical Engineering
Volume TT104

SPIE PRESS
Bellingham, Washington USA
Library of Congress Cataloging-in-Publication Data

Title: Design technology co-optimization in the era of sub-resolution IC scaling / Lars W. Liebmann, Kaushik Vaidyanathan, and Lawrence Pileggi.
Other titles: Tutorial texts in optical engineering ; v. TT 104.
Classification: LCC TK7874.L455 2015 | DDC 621.3815—dc23
LC record available at http://lccn.loc.gov/2015032506

Published by
SPIE
P.O. Box 10
Bellingham, Washington 98227-0010 USA
Phone: +1 360.676.3290
Fax: +1 360.647.1445
Email: books@spie.org
Web: http://spie.org

Copyright © 2016 Society of Photo-Optical Instrumentation Engineers (SPIE)

All rights reserved. No part of this publication may be reproduced or distributed in any form or by any means without written permission of the publisher.

The content of this book reflects the work and thought of the authors. Every effort has been made to publish reliable and accurate information herein, but the publisher is not responsible for the validity of the information or for any outcomes resulting from reliance thereon.

Printed in the United States of America.
First Printing.
We dedicate this book to all of the challenges that have made this journey interesting and to all of the outstanding colleagues who have kept semiconductor scaling going far beyond anyone’s expectations.
Introduction to the Series

Since its inception in 1989, the Tutorial Texts (TT) series has grown to cover many diverse fields of science and engineering. The initial idea for the series was to make material presented in SPIE short courses available to those who could not attend and to provide a reference text for those who could. Thus, many of the texts in this series are generated by augmenting course notes with descriptive text that further illuminates the subject. In this way, the TT becomes an excellent stand-alone reference that finds a much wider audience than only short course attendees.

Tutorial Texts have grown in popularity and in the scope of material covered since 1989. They no longer necessarily stem from short courses; rather, they are often generated independently by experts in the field. They are popular because they provide a ready reference to those wishing to learn about emerging technologies or the latest information within their field. The topics within the series have grown from the initial areas of geometrical optics, optical detectors, and image processing to include the emerging fields of nanotechnology, biomedical optics, fiber optics, and laser technologies. Authors contributing to the TT series are instructed to provide introductory material so that those new to the field may use the book as a starting point to get a basic grasp of the material. It is hoped that some readers may develop sufficient interest to take a short course by the author or pursue further research in more advanced books to delve deeper into the subject.

The books in this series are distinguished from other technical monographs and textbooks in the way in which the material is presented. In keeping with the tutorial nature of the series, there is an emphasis on the use of graphical and illustrative material to better elucidate basic and advanced concepts. There is also heavy use of tabular reference data and numerous examples to further explain the concepts presented. The publishing time for the books is kept to a minimum so that the books will be as timely and up-to-date as possible. Furthermore, these introductory books are competitively priced compared to more traditional books on the same subject.

When a proposal for a text is received, each proposal is evaluated to determine the relevance of the proposed topic. This initial reviewing process has been very helpful to authors in identifying, early in the writing process, the need for additional material or other changes in approach that would serve to strengthen the text. Once a manuscript is completed, it is peer reviewed to ensure that chapters communicate accurately the essential ingredients of the science and technologies under discussion.

It is my goal to maintain the style and quality of books in the series and to further expand the topic areas to include new emerging fields as they become of interest to our reading audience.

James A. Harrington
Rutgers University
# Table of Contents

**Preface**  
List of Acronyms and Abbreviations  
1 The Escalating Design Complexity of Sub-ResolutionScaling  
2 Multiple-Exposure-Patterning-Enhanced Digital Logic Design  
3 Design for Manufacturability  
4 Design Technology Co-Optimization

1 The Escalating Design Complexity of Sub-Resolution Scaling  
1.1 $k_1 > 0.6$: The Good Old Days  
1.2 $0.6 > k_1 > 0.5$: Optical Proximity Correction  
1.3 $0.5 > k_1 > 0.35$: Off-Axis Illumination  
1.4 $0.35 > k_1 > 0.25$: Asymmetric Off-Axis Illumination  
1.5 $0.25 > k_1 > 0.125$: Double Patterning  
1.6 $k_1 < 0.125$: Higher-Order Frequency Multiplication

2 Multiple-Exposure-Patterning-Enhanced Digital Logic Design  
2.1 Introduction to Physical Design  
2.2 The Evolution of Standard Cell Layouts  
2.2.1 Attributes of standard logic cells  
2.2.2 Impact of patterning-driven design constraints  
2.3 Standard Cell Layout in the Era of Double Patterning  
2.4 Two Generations of Double-Patterning-Enhanced P&R  
2.4.1 Color-aware placement  
2.4.2 Color-aware routing  
2.5 Beyond P&R: The Impact of Double Patterning on Floor Planning

3 Design for Manufacturability  
3.1 Critical Area Optimization  
3.2 Recommended Design Rules  
3.3 Chemical Mechanical Polishing  
3.4 Lithography-Friendly Design  
3.5 Prescriptive Design Rules  
3.6 Case Study: Design Implications of Restrictive Patterning  
3.6.1 Background  
3.6.2 Impact of extremely restrictive lithography on SoC design

4 Design Technology Co-Optimization  
4.1 The Four Phases of DTCO  
4.1.1 Phase 1: establish scaling targets

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 04 Feb 2021  
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use
4.1.2 Phase 2: first architecture definition 105
4.1.3 Phase 3: cell-level refinement 106
4.1.4 Phase 4: block-level refinement 106

4.2 Case Study 1: Leaf-Cell DTCO at N14 107
   4.2.1 Technology definition 108
   4.2.2 Embedded memory 109
   4.2.3 Standard cell logic 110
   4.2.4 Analog design blocks 114
   4.2.5 Leaf-cell DTCO effective at N14: holistic DTCO provides further improvements 116

4.3 Case Study 2: Holistic DTCO at N14 117
   4.3.1 Holistic DTCO for embedded memories 117
   4.3.2 Holistic standard-cell DTCO 121
   4.3.3 Holistic DTCO for analog components 124
   4.3.4 Test chip and experimental results 125

4.4 Case Study 3: Using DTCO Techniques to Quantify the Scaling of N7 with EUV and 193i 131
   4.4.1 Introduction 131
   4.4.2 Scaling targets 133
   4.4.3 Comparison of RET implications 134
   4.4.4 Objectives for power, performance, and area scaling 136
   4.4.5 Cell architecture comparison 136
   4.4.6 Macro-level scaling assessment 143
   4.4.7 Cell-area-limited scaling 143
   4.4.8 Router-limited scaling 145

4.5 Conclusion 150

References 153
Index 159
Preface

Design technology co-optimization (DTCO), at its core, is not a specific solution or even a rigorous engineering approach; it is fundamentally a mediation process between designers and process engineers that aims to ensure a competitive technology architecture definition while avoiding schedule or yield risks caused by unrealistically aggressive process assumptions. The authors of this book represent the two parties that come together in these discussions:

**Lars Liebmann** joined IBM in 1991, when enhancements in the physical lithography resolution through a reduction of wavelength and an increase in numerical aperture were still keeping up with the semiconductor industry’s relentless pace of transistor density scaling. However, even back then, the advances in exposure hardware lagged behind the need for higher resolution in support of early device and process development. Liebmann started his career developing design solutions for layout-intensive resolution enhancement techniques (RETs). One such RET, alternating phase-shifted mask (altPSM) lithography, had just become lithographically viable, and one of Liebmann’s first jobs involved drawing phase shapes onto transistors in an early exploratory device test-chip at IBM’s Advanced Technology Lab. Naturally, this tedious work lead to him to explore means of automating the layout manipulations necessary to implement such RETs and introduced him to the engineering discipline of electronic design automation (EDA). He joined his colleagues Mark Lavin and Bill Leipold who had just begun work on a piece of code that could very well be the original ancestor to all optical proximity correction (OPC) solutions on the market today. This simple piece of EDA code, which they called ShrinkLonelyGates and that located and biased isolated transistors in a chip design, laid the foundation in 1992 for what many years later would become known as computational lithography.\(^1\) Access to these early (and by today’s standards extremely limited) shape-manipulation functions in IBM’s internal EDA engine, Niagara, not only opened the door for Liebmann to explore automatic altPSM design\(^2\) and more-complex OPC solutions but also led to spin-offs such as code to generate sub-resolution assist features (SRAFs).\(^3\) Although these automatic layout-manipulation routines were extremely useful in driving the adoption of these RETs for increasingly complex
chip designs, equally important was the observation that it was quite easy for designers to design shapes that were perfectly legal by that technology node’s design rules but would cause the automatic generation routines to fail. Successful and efficient implementation of strong RETs required negotiations with the designers and forced the conversations that many years later grew into DTCO. Soon after the advancements in the fundamental exposure-tool resolution slowed down and eventually stopped entirely after the introduction of 193-nm immersion lithography, scaling through increasingly complex and design-restrictive RETs became the semiconductor industry’s only path forward.

Even though altPSM was never adopted as a semiconductor manufacturing solution for IBM or the majority of the semiconductor industry, much of what Liebmann learned in those early years of computational lithography held true for many technology nodes to follow:

- The design space is enormously complicated, and designers operate under crushing time pressure. Maintaining design efficiency must be paramount in any restriction the process engineers intend to impose on designers.
- Very few designers actually draw transistors and wires; the design space consists entirely of a complex set of automated design solutions. Any process-driven constraints or required design manipulations have to seamlessly integrate into established design flows.
- Any substantial design constraints must be negotiated early in the technology node and implemented far upstream in the design flow to avoid design re-spins that put a product’s time-to-market schedule at risk.

Liebmann’s interest in exploring the extent of semiconductor scaling by taking DTCO to its extreme limit caused him to cross paths with a research team at Carnegie Mellon University.

**Kaushik Vaidyanathan** started his career as an application-specific integrated circuit (ASIC) designer at IBM in 2007. It was the time when designers across the industry were becoming increasingly reliant on electronic design automation (EDA) tools. Specifically, at IBM, their in-house EDA tools had matured to a point where someone straight from undergraduate study could be trained to design a multi-million gate 17 mm × 17 mm N90 ASIC. Physical-design tools and methodologies were complex, and maneuvering them to accomplish design goals was challenging. However, after a year, Vaidyanathan found himself asking many questions about the inner workings of these tools and methodologies, only to realize that he did not have the background to seek or understand the answers. So, he decided to attend graduate school in 2009.

Thanks to Prof. Pileggi (his Ph.D. advisor), Vaidyanathan had the opportunity to build a background and work alongside industry veterans such
as Liebmann, seeking answers and solutions to a daunting problem facing the IC industry, i.e., affordable and efficient scaling of systems-on-chip (SoCs) past N20. In their quest for answers, Vaidyanathan and his collaborators started with rigorous DTCO at the N14 technology node for different components of a SoC. This work lasted a couple of years, and they developed several insights, the two most-important ones for Vaidyanathan were

1. There is no substitute for experience—aside from input from experts such as Liebmann, a sensible exploration of the vast design and manufacturability tradeoff space becomes quickly unmanageable; and
2. Opportunities are hidden amidst challenges, a notion that Vaidyanathan learned from his Ph.D. advisor that enabled them to exploit the technology challenges to develop frameworks for affordable design beyond N20, such as construct-based design and smart memory synthesis.

Much of the collaborative work between Carnegie Mellon and IBM is presented in this book as case studies in Sections 3.6, 4.2, and 4.3.

Lawrence Pileggi began his career at Westinghouse Research and Development as an IC designer in 1984. His first chip project was an ASIC elevator controller in a 2-µm CMOS operating at a blazing clock frequency of 1 MHz. Intrigued by the challenges of performing very-large-scale design with somewhat unreliable CAD tools, he entered the Ph.D. program at Carnegie Mellon University in 1986 to participate in electronic design automation (EDA) research, with a specific focus on simulation algorithms for his thesis work. After six years as a faculty member at the University of Texas–Austin, he returned to Carnegie Mellon with the objective of working on research at the boundary between circuit design and design methodologies.

In 1997, the Focus Center Research Program (FCRP) was launched by the Semiconductor Research Corporation (SRC), a consortium of US semiconductor companies. The FCRP was established to create the funding and collaboration that would be needed to perform long-range research. Pileggi became a member of one of the first FCRP programs, the Gigascale Silicon Research Center (GSRC), led by Richard Newton at Berkeley. While there were many challenges faced by the semiconductor community at that time, Pileggi chose to focus his GSRC research on an impending problem that was professed by two of his Carnegie Mellon colleagues, Wojtek Maly and Andrzej Strojwas, i.e., the impending manufacturability challenges due to subwavelength lithography. His colleagues had developed tools and methods at Carnegie Mellon to evaluate the difficult to print patterns and to count the number of unique patterns as a function of the lithography radius of influence.

Captivated by the impact of these patterns on design methods and circuit topologies, Pileggi and his group created a regular-fabrics-based design methodology that followed a simple philosophy: rather than asking lithographers to
print any circuit patterns, as they had been doing for decades, instead ask them
what patterns they can print well and then develop circuits and methodologies
that best utilize those patterns. Pileggi and his group worked with researchers
from IBM, Intel, and other sponsoring members of the GSRC to explore the
benefits and possibilities of regular fabric design. Through some of those
interactions Pileggi met Lars Liebmann at IBM.

While Pileggi and his students worked with various companies, both
through Carnegie Mellon and later via a small start-up company, Fabbrix
(which was acquired by PDF Solutions in 2007), the deepest collaborations
occurred with IBM, and Liebmann in particular. In 2010 a partnership with
Lars and IBM to work on the DARPA GRATE program produced much of
the work that comprises the later sections of this book. Now, as the industry
deploys the 14-nm FinFET technology node, the regular-fabrics approach,
pattern templates, and construct-based design methods that were proposed are
clearly evident.

Because DTCO has evolved from LFD and design for manufacturability
(DFM), this book starts the DTCO discussion by first reviewing the impact that
increasingly invasive RETs and multiple-exposure patterning (MEP) techniques
have had on design. It then covers the major DFM techniques and highlights
competing optimization goals of LFD and DFM. However, DTCO differs from
LFD and DFM in that the goal of DTCO is not just to communicate process-
driven constraints to the designers but to negotiate a more optimal tradeoff
between designers’ needs and process developers’ concerns. To facilitate this
coop-optimization, it is important for the process engineers to understand the
high-level goals of the design community. To that end, this book reviews the
fundamental SoC design objectives as well as the resulting topological constraints
on different building blocks of a SoC, such as standard cells, embedded
memories, analog components, and place and route flows. Finally, the mechanics
of the DTCO process are explained as a series of steps that incrementally refine
the technology architecture using concepts such as a design-driven rules
definition, design-rule-arc analysis, and construct-based technology definition.
The efficacy of DTCO is illustrated using detailed case studies at N14 contrasting
leaf-cell optimization against a more-comprehensive holistic DTCO approach.
The final case study illustrates how DTCO can be applied to quantifying the
achievable scaling to N7 under different lithography assumptions.

While it is impossible to present a simple “how to” manual for DTCO, the
goal of this book is to break down the abstract concept of DTCO into specific
actionable components that collectively play an increasingly important role in
maintaining the industry’s aggressive pace of semiconductor scaling.

Lars W. Liebmann
Kaushik Vaidyanathan
Lawrence Pileggi
December 2015
# List of Acronyms and Abbreviations

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>altPSM</td>
<td>Alternating phase-shift mask</td>
</tr>
<tr>
<td>ASIC</td>
<td>Application-specific integrated circuit</td>
</tr>
<tr>
<td>BEOL</td>
<td>Back end of line</td>
</tr>
<tr>
<td>CAD</td>
<td>Computer-aided design</td>
</tr>
<tr>
<td>CAM</td>
<td>Content addressable memory</td>
</tr>
<tr>
<td>CMOS</td>
<td>Complementary metal–oxide semiconductor</td>
</tr>
<tr>
<td>DDL</td>
<td>Double dipole lithography</td>
</tr>
<tr>
<td>DFM</td>
<td>Design for manufacturability</td>
</tr>
<tr>
<td>DOF</td>
<td>Depth of focus</td>
</tr>
<tr>
<td>DRC</td>
<td>Design rule check</td>
</tr>
<tr>
<td>DRM</td>
<td>Design rule manual</td>
</tr>
<tr>
<td>DSA</td>
<td>Directed self-assembly</td>
</tr>
<tr>
<td>DTCO</td>
<td>Design technology co-optimization</td>
</tr>
<tr>
<td>EDA</td>
<td>Electronic design automation</td>
</tr>
<tr>
<td>eDRAM</td>
<td>Embedded dynamic random access memory</td>
</tr>
<tr>
<td>EUV</td>
<td>Extreme ultraviolet lithography</td>
</tr>
<tr>
<td>FEOL</td>
<td>Front end of line</td>
</tr>
<tr>
<td>FinFET</td>
<td>Fin-based field effect transistor</td>
</tr>
<tr>
<td>FPU</td>
<td>Floating point unit</td>
</tr>
<tr>
<td>GDSII</td>
<td>Graphic Database System (format for physical design data)</td>
</tr>
<tr>
<td>GL1</td>
<td>IBM’s old internal standard (format for physical design data)</td>
</tr>
<tr>
<td>GOPS per W</td>
<td>Giga-operations per second per watt</td>
</tr>
<tr>
<td>HDL</td>
<td>Hardware description language</td>
</tr>
<tr>
<td>IDM</td>
<td>Integrated device manufacturer</td>
</tr>
<tr>
<td>IP</td>
<td>Intellectual property</td>
</tr>
<tr>
<td>LE³</td>
<td>Litho–etch–litho–etch–litho-etch triple patterning</td>
</tr>
<tr>
<td>LELE</td>
<td>Litho–etch–litho–etch double patterning</td>
</tr>
<tr>
<td>LFD</td>
<td>Lithography-friendly design</td>
</tr>
<tr>
<td>LVS</td>
<td>Layout versus schematic</td>
</tr>
<tr>
<td>MEP</td>
<td>Multiple-exposure patterning</td>
</tr>
<tr>
<td>MP</td>
<td>Microprocessor</td>
</tr>
<tr>
<td>Acronym</td>
<td>Description</td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
</tr>
<tr>
<td>OASIS</td>
<td>Open Artwork System Interchange Standard (format for physical design data)</td>
</tr>
<tr>
<td>OPC</td>
<td>Optical proximity correction</td>
</tr>
<tr>
<td>ORC</td>
<td>Optical rule check</td>
</tr>
<tr>
<td>OTA</td>
<td>Operational transconductance amplifier</td>
</tr>
<tr>
<td>PDK</td>
<td>Process design kit</td>
</tr>
<tr>
<td>PEX</td>
<td>Parasitic extraction</td>
</tr>
<tr>
<td>PPA</td>
<td>Power-performance-area metric</td>
</tr>
<tr>
<td>PRAF</td>
<td>Printing assist features</td>
</tr>
<tr>
<td>PWQ</td>
<td>Process window qualification</td>
</tr>
<tr>
<td>RDR</td>
<td>Restricted design rule</td>
</tr>
<tr>
<td>RET</td>
<td>Resolution enhancement technique</td>
</tr>
<tr>
<td>RTL</td>
<td>Register transfer level</td>
</tr>
<tr>
<td>SADP</td>
<td>Self-aligned double patterning</td>
</tr>
<tr>
<td>SAQP</td>
<td>Self-aligned quadruple patterning</td>
</tr>
<tr>
<td>SAR-ADC</td>
<td>Successive-approximation analog-to-digital converter</td>
</tr>
<tr>
<td>SES</td>
<td>Statistical element selection</td>
</tr>
<tr>
<td>SIT</td>
<td>Sidewall image-transfer patterning</td>
</tr>
<tr>
<td>SIT²</td>
<td>Sidewall image-transfer double patterning</td>
</tr>
<tr>
<td>SMO</td>
<td>Source mask optimization</td>
</tr>
<tr>
<td>SMSF</td>
<td>Smart memory synthesis framework</td>
</tr>
<tr>
<td>SoC</td>
<td>System on chip</td>
</tr>
<tr>
<td>SRAF</td>
<td>Sub-resolution assist features</td>
</tr>
<tr>
<td>SRAM</td>
<td>Static random access memory</td>
</tr>
</tbody>
</table>