HANDBOOK OF
OPTICAL
BIOMEDICAL
DIAGNOSTICS
SECOND EDITION
Volume 2: Methods

Valery V. Tuchin
EDITOR

SPIE PRESS
Bellingham, Washington USA
Table of Contents

Preface
List of Contributors

III Scattering, Fluorescence, Infrared, and Raman Spectroscopy of Tissues

Alexander V. Priezzhev and Juergen Lademann

1. **Optical Study of RBC Aggregation in Whole Blood Samples and Single Cells**

Alexander V. Priezzhev, Kisung Lee, Nikolai N. Firsov, and Juergen Lademann

1.1 Introduction. Microrheological Structure of Blood: Biophysical and Clinical Aspects 5

1.2 Importance of Quantitative Measurement of Red Blood Cell Aggregation and Deformability Parameters 9

1.3 Arrangement of a Couette-Chamber-Based Laser Backscattering Aggregometer 12

1.3.1 Measurement procedure 13

1.4 Kinetics of the Aggregation and Disaggregation Process in Whole Blood Samples 15

1.4.1 Determination of the characteristic parameters of the aggregation and disaggregation process in whole blood samples 15

1.5 Parameters Influencing the Aggregation and Disaggregation Measurements 16

1.5.1 Effect of blood sample temperature 16

1.5.2 Effect of blood sample oxygenation 18

1.5.3 Effect of sedimentation 19

1.5.4 Effect of hematocrit 19

1.6 Comparison of Aggregation and Disaggregation Measurements with Sedimentation Measurements 20

1.7 Laser Tweezers as a New Tool for Studying RBC Aggregation at the Single-Cell Level 21

1.7.1 Laser tweezers operation principle and experimental arrangement 22

1.7.2 Sample preparation and measurement procedure 24
Table of Contents

1.7.2.1 Measurement of the disaggregation force 24
1.7.2.2 Measurement of the aggregation force 25
1.8 Hemorheological Characterization of Various Diseases by Aggregation and Disaggregation Measurements of Blood Samples 26
References 29

2 Light Scattering Spectroscopy of Epithelial Tissues: Principles and Applications 37
Lev T. Perelman and Vadim Backman
2.1 Introduction 37
2.2 Microscopic Architecture of Mucosal Tissues 39
 2.2.1 Morphology of the cell 40
 2.2.2 Histology of mucosae 44
 2.2.3 Introduction to histopathology of early cancer and dysplasia 47
2.3 Principles of Light Scattering 50
 2.3.1 Rigorous solution of the direct scattering problem 51
 2.3.2 Approximate solutions of the scattering problem 53
 2.3.3 Numerical solutions of the scattering problem 58
2.4 Light Scattering by Cells and Subcellular Structures 59
2.5 Light Transport in Superficial Tissues 66
2.6 Detection of Cancer with Light Scattering Spectroscopy 70
 2.6.1 Diagnosis of early cancer and precancerous lesions with diffusely scattered light 71
 2.6.2 Diagnosis of early cancer and precancerous lesions with single-scattered light 77
 2.6.3 Imaging of early cancer and precancerous lesions with an endoscopic polarized scanning spectroscopy instrument 83
2.7 Confocal Light Absorption and Scattering Spectroscopic Microscopy 88
Acknowledgments 92
References 92

3 Reflectance and Fluorescence Spectroscopy of Human Skin in vivo 99
Yuri P. Sinichkin, Nikiforos Kollias, George I. Zonios, Sergei R. Utz, and Valery V. Tuchin
3.1 Introduction 99
3.2 Human-Skin Back Reflectance and Autofluorescence Spectra Formation 100
 3.2.1 Diffuse reflectance spectrum 100
 3.2.2 Autofluorescence spectra 105
3.3 Simple Optical Models of Human Skin 112
 3.3.1 Simple skin model for reflectance analysis 112
 3.3.2 Simple skin model for autofluorescence analysis 115
Table of Contents

3.4 Combined Reflectance and Fluorescence Spectroscopy
Method for *in vivo* Skin Examination 118

3.4.1 Correction of the internal absorption effect in fluorescence emission 118

3.4.2 Determination of melanin and erythema indices 119

3.4.3 Monitoring of hemoglobin oxygenation 122

3.5 Color Perception of Human-Skin Back Reflectance and Fluorescence Emission 127

3.5.1 Color analysis of reflectance and fluorescence spectra 128

3.5.2 Color imaging 133

3.6 Polarization Reflectance Spectroscopy 136

3.7 Polarization Imaging 139

3.8 Sunscreen Evaluation using Reflectance and Fluorescence Spectroscopy 143

3.9 Control of Skin Optical Properties 147

3.9.1 Introduction 147

3.9.2 Skin compression and stretching 148

3.9.3 Immersion optical clearing 151

3.9.3.1 *In vitro* spectrophotometry 155

3.9.3.2 *In vivo* spectral reflectance measurement 159

3.9.3.3 Frequency-domain measurements 161

3.9.4 Skin blood flow imaging 163

3.9.5 OCT imaging 163

3.9.6 Confocal microscopy 164

3.9.7 Fluorescence and Raman signal detection 165

3.9.8 Second harmonic generation 166

3.9.9 Skin heating 167

3.9.10 UV radiation 168

3.9.11 Applications 168

3.9.12 Conclusion 170

Conclusion 170

Acknowledgments 170

References 171

4 Infrared and Raman Spectroscopy of Human Skin *in vivo* 191

Gerald W. Lucassen, Peter J. Caspers, Gerwin J. Puppels, Maxim E. Darvin, and Juergen Lademann

4.1 Introduction: Basic Principles of IR and Raman Spectroscopy 191

4.2 Fourier Transform Infrared Spectroscopy of Human-Skin Stratum Corneum *in vivo* 193

4.2.1 Experimental ATR-FTIR setup 195

4.2.2 Human-skin stratum corneum spectra and band assignments 196

4.2.3 ATR-FTIR spectrum of water 198
5.2.1 Intrinsic fluorophores 245
5.2.2 Fluorescent markers 246
5.3 Spectroscopic, Microscopic, and Imaging Techniques 248
5.3.1 Fluorescence spectroscopy 248
5.3.2 Fluorescence microscopy 250
5.3.3 Imaging techniques 252
5.4 Time-Resolved Fluorescence Spectroscopy and Imaging 254
5.4.1 Time-correlated single photon counting 254
5.4.2 Phase fluorometry 256
5.4.3 Time-gated fluorescence spectroscopy 258
5.4.4 Time-resolved fluorescence imaging 259
5.5 Total Internal Reflection Fluorescence Spectroscopy and Microscopy (TIRFS/TIRFM) 262
5.5.1 Theory of TIRFS/TIRFM 263
5.5.2 Technical set-up 264
5.5.3 Combination of TIRFS/TIRFM with innovative fluorescence microscopic techniques 266
5.5.4 Application of TIRFS/TIRFM in cell biology 267
5.6 Energy Transfer Spectroscopy 268
5.6.1 Basic mechanisms 268
5.6.2 FRET applications 271
5.7 Wide-Field 3D Microscopy 273
5.7.1 Structured illumination 273
5.7.2 Light sheet fluorescence microscopy (LSFM) 274
5.8 Laser Scanning and Multiphoton Microscopy 275
5.8.1 Introduction 275
5.8.2 Performance of confocal laser scanning microscopes 276
5.8.3 Applications of CLSM 280
5.8.4 Multiphoton microscopy 281
5.8.5 Super-resolution and single-molecule detection 284
5.9 Concluding Remarks 287
References 287

IV Coherent-Domain Methods for Biological Flows and Tissue Structure Monitoring 305
J. David Briers and Sean J. Kirkpatrick

6 Laser Speckles, Doppler, and Imaging Techniques for Blood and Lymph Flow Monitoring 309
Ivan V. Fedosov, Yoshihisa Aizu, Valery V. Tuchin, Naomichi Yokoi, Izumi Nishidate, Vladimir P. Zharov, and Ekaterina I. Galanzha
6.1 Introduction 309
6.2 Doppler and Speckle Techniques 314
Table of Contents

7 Real-Time Imaging of Microstructure and Function Using Optical Coherence Tomography

Christine P. Hendon and Andrew M. Rollins

7.1 Introduction 385

7.2 Optical Coherence Tomography Principles 386

7.2.1 Time-domain OCT 388

7.2.2 Frequency-domain OCT 389

7.2.2.1 Spectrometers 393

7.2.2.2 Light sources 394

7.3 Functional Imaging 396

7.3.1 Doppler OCT 396

7.3.2 Polarization-sensitive OCT 397

7.4 Applications of OCT 398

7.4.1 Ophthalmology 398

7.4.2 Cardiology 400

7.4.3 Oncology 406

7.5 Conclusions 411

References 412

8 Speckle Technologies for Monitoring and Imaging Tissues and Tissue-Like Phantoms

Dmitry A. Zimnyakov, Olga V. Ushakova, David J. Briers, and Valery V. Tuchin

8.1 Introduction 429

8.2 Diffusing-Wave Spectroscopy (DWS) as a Tool for Tissue Structure and Cell Flow Monitoring 430

8.3 Laser Speckle Contrast Analysis (LASCA) for Measuring Blood Flow 442

8.3.1 Statistical properties of laser speckle 442

8.3.2 Time-varying speckle 442

8.3.3 Full-field methods 443

8.3.4 Single-exposure speckle photography 444

8.3.5 Laser speckle contrast analysis (LASCA) 444

8.3.6 The question of speckle size 445

8.3.7 Theory 446

8.3.8 Practical considerations 448

8.3.9 Early applications of the LASCA technique 449

8.3.10 Important developments of the basic LASCA technique 450

8.3.11 Conclusions 452

8.4 Modification of Speckle Contrast Analysis to Improve Depth Resolution and to Characterize Scattering Properties of a Probed Medium 453

8.5 Various Modifications of Laser Speckle Contrast Imaging 463
Table of Contents

8.6 Imaging Using Contrast Measurements of Partially Developed Speckles 467
8.7 Monitoring Tissue Thermal Modification with a Bundle-Based Full-Field Speckle Analyzer 470
8.8 Summary 486
Acknowledgments 487
References 487

9 Optical Assessment of Tissue Mechanics 497
Sean J. Kirkpatrick, Donald D. Duncan, Brendan F. Kennedy, and David D. Sampson
9.1 Introduction 499
9.2 Introduction to Prior Edition 499
9.3 Tissue Mechanics and Medicine 500
 9.3.1 Dermatology 501
 9.3.2 Oncology 501
 9.3.3 Ophthalmology 502
 9.3.4 Cardiology 504
 9.3.5 Other application areas 504
9.4 Constitutive Relations in Biological Tissues 505
9.5 Laser Speckle Patterns Arising from Biological Tissues 511
 9.5.1 First-order statistics 512
 9.5.2 Second-order statistics 514
9.6 Elastography Measurements by Tracking and Translating Laser Speckle: The Transform Method 515
 9.6.1 Potential error sources 521
 9.6.2 Applications of laser speckle elastography to hard and soft tissues 522
9.7 Alternative Processing Algorithms for Calculating Speckle Shift 526
 9.7.1 Non parametric speckle shift estimators 526
 9.7.2 Parametric speckle shift estimators 527
 9.7.2.1 A minimum mean square error estimator 528
9.8 Expanding to Higher Dimensions 531
9.9 What is Really Measured in Laser Speckle-Tracking Elastography? 534
 9.9.1 Lagrangian description of motion of particles in object space 534
 9.9.2 Relationship between elastograms and SEDFs 536
9.10 In vivo Laser-Speckle-Tracking Optical Elastography 538
9.11 Performance Comparisons 538
9.12 Generalizations 541
9.13 Elastography of Tissues with Optical Coherence Tomography 544
Table of Contents

10 Optical Clearing of Tissues: Benefits for Biology, Medical Diagnostics, and Phototherapy 565

E. A. Genina, A. N. Bashkatov, Yuri P. Sinichkin, I. Yu. Yanina, and V. V. Tuchin

10.1 Fundamentals of Optical Clearing (OC) of Tissues and Cells 565

10.2 Immersion OC 568

10.3 Compression OC 581

10.4 Photochemical, Thermal, and Photothermal OC 585

10.5 Applications of Optical Clearing 587

10.5.1 Optical coherence tomography 587

10.5.2 Optical projection tomography 593

10.5.3 Fluorescence imaging 594

10.5.4 Photoacoustic imaging 597

10.5.5 Nonlinear and Raman microscopy 600

10.5.6 Terahertz spectroscopy 603

10.6 Determination of OCA and Drug Diffusion Coefficients in Tissues 604

10.7 Conclusion 610

Acknowledgments 610

References 610

Index 639
Preface

This *Handbook* is the second edition of the monograph initially published in 2002. The first edition described some aspects of laser–cell and laser–tissue interactions that are basic for biomedical diagnostics and presented many optical and laser diagnostic technologies prospective for clinical applications. The main reason for publishing such a book was the achievements of the last millennium in light scattering and coherent light effects in tissues, and in the design of novel laser and photonics techniques for the examination of the human body. Since 2002, biomedical optics and biophotonics have had rapid and extensive development, leading to technical advances that increase the utility and market growth of optical technologies. Recent developments in the field of biophotonics are wide-ranging and include novel light sources, delivery and detection techniques that can extend the imaging range and spectroscopic probe quality, and the combination of optical techniques with other imaging modalities.

The innovative character of photonics and biophotonics is underlined by two Nobel prizes in 2014 awarded to Eric Betzig, Stefan W. Hell, and William E. Moerner “for the development of super-resolved fluorescence microscopy” and to Isamu Akasaki, Hiroshi Amano, and Shuji Nakamura “for the invention of efficient blue light-emitting diodes which has enabled bright and energy-saving white light sources.” The authors of this *Handbook* have a strong input in the development of new solutions in biomedical optics and biophotonics and have conducted cutting-edge research and developments over the last 10–15 years, the results of which were used to modify and update early written chapters. Many new, world-recognized experts in the field have joined the team of authors who introduce fresh blood in the book and provide a new perspective on many aspects of optical biomedical diagnostics.

The optical medical diagnostic field covers many spectroscopic and laser technologies based on near-infrared (NIR) spectrophotometry, fluorescence and Raman spectroscopy, optical coherent tomography (OCT), confocal microscopy, optoacoustic (photoacoustic) tomography, photon-correlation spectroscopy and imaging, and Doppler and speckle monitoring of biological flows. These topics—as well as the main trends of the modern laser diagnostic techniques, their fundamentals and corresponding basic research
on laser–tissue interactions, and the most interesting clinical applications—are discussed in the framework of this Handbook. The main unique features of the book are as follows:

1. Several chapters of basic research that discuss the updated results on light scattering, speckle formation, and other nondestructive interactions of laser light with tissue; they also provide a basis for the optical and laser medical diagnostic techniques presented in the other chapters.
2. A detailed discussion of blood optics, blood and lymph flow, and blood-aggregation measurement techniques, such as the well-recognized laser Doppler method, speckle technique, and OCT method.
3. A discussion of the most-recent prospective methods of laser (coherent) tomography and spectroscopy, including OCT, optoacoustic (photoacoustic) imaging, diffusive wave spectroscopy (DWS), and diffusion frequency-domain techniques.

The intended audience of this book consists of researchers, postgraduate and undergraduate students, biomedical engineers, and physicians who are interested in the design and applications of optical and laser methods and instruments for medical science and practice. Due to the large number of fundamental concepts and basic research on laser–tissue interactions presented here, it should prove useful for a much broader audience that includes students and physicians, as well. Investigators who are deeply involved in the field will find up-to-date results for the topics discussed. Each chapter is written by representatives of the leading research groups who have presented their classic and most recent results. Physicians and biomedical engineers may be interested in the clinical applications of designed techniques and instruments, which are described in a few chapters. Indeed, laser and photonics engineers may also be interested in the book because their acquaintance with a new field of laser and photonics applications can stimulate new ideas for lasers and photonic devices design. The two volumes of this Handbook contain 21 chapters, divided into four parts (two per volume):

- Part I describes the fundamentals and basic research of the extinction of light in dispersive media; the structure and models of tissues, cells, and cell ensembles; blood optics; coherence phenomena and statistical properties of scattered light; and the propagation of optical pulses and photon-density waves in turbid media. Tissue phantoms as tools for tissue study and calibration of measurements are also discussed.
- Part II presents time-resolved (pulse and frequency-domain) imaging and spectroscopy methods and techniques applied to tissues, including optoacoustic (photoacoustic) methods. The absolute quantification of the main absorbers in tissue by a NIR spectroscopy method is discussed. An example biomedical application—the possibility of monitoring brain activity with NIR spectroscopy—is analyzed.
Part III presents various spectroscopic techniques of tissues based on elastic and Raman light scattering, Fourier transform infrared (FTIR), and fluorescence spectroscopies. In particular, the principles and applications of backscattering diagnostics of red blood cell (RBC) aggregation in whole blood samples and epithelial tissues are discussed. Other topics include combined back reflectance and fluorescence, FTIR and Raman spectroscopies of the human skin in vivo, and fluorescence technologies for biomedical diagnostics.

The final section, Part IV, begins with a chapter on laser Doppler microscopy, one of the representative coherent-domain methods applied to monitoring blood in motion. Methods and techniques of real-time imaging of tissue ultrastructure and blood flows using OCT is also discussed. The section also describes various speckle techniques for monitoring and imaging tissue, in particular, for studying tissue mechanics and blood and lymph flow.

Financial support from a FiDiPro grant of TEKES, Finland (40111/11) and Academic D.I. Mendeleev Fund Program of Tomsk National Research State University have helped me complete this book project. I greatly appreciate the cooperation and contribution of all of the authors and co-editors, who have done a great work on preparation of this book. I would like to express my gratitude to Eric Pepper and Tim Lamkins for their suggestion to prepare the second edition of the Handbook and to Scott McNeill for assistance in editing the manuscript. I am very thankful to all of my colleagues from the Chair and Research Education Institute of Optics and Biophotonics at Saratov National Research State University and the Institute of Precision Mechanics and Control of RAS for their collaboration, fruitful discussions, and valuable comments. I am very grateful to my wife and entire family for their exceptional patience and understanding.

Valery V. Tuchin
April 2016

References

7. V. V. Tuchin (Ed.), *Selected Papers on Tissue Optics Applications in Medical Diagnostics and Therapy*, Milestones Series MS 102, SPIE Press, Bellingham (1994).

List of Contributors

Yoshihisa Aizu
Muroran Institute of Technology, Japan

Vadim Backman
Northwestern University, USA

A. N. Bashkatov
Saratov National Research State University and Tomsk National Research State University, Russia

David J. Briers
Kingston University, UK

Peter J. Caspers
Erasmus University Rotterdam, The Netherlands

Maxim E. Darvin
University Clinic Charité, Germany

Donald D. Duncan
Portland State University, USA

Ivan V. Fedosov
Saratov National Research State University, Russia

Nikolai N. Firsov
Russian State Medical University, Russia

Ekaterina I. Galanzha
University of Arkansas for Medical Sciences, USA

E. A. Genina
Saratov National Research State University and Tomsk National Research State University, Russia

Christine P. Hendon
Columbia University, USA

Brendan F. Kennedy
University of Western Australia, Australia

Sean J. Kirkpatrick
Michigan Technological University, USA

Nikiforos Kollias
University of British Columbia, Canada

Juergen Lademann
University Clinic Charité, Germany

Kisung Lee
Lomonosov Moscow State University, Russia

Gerald W. Lucassen
Philips Research, The Netherlands
List of Contributors

Izumi Nishidate
Tokyo University of Agriculture and Technology, Japan

Lev T. Perelman
Harvard University, USA

Alexander V. Priezzhev
Lomonosov Moscow State University, Russia

Gerwin J. Puppels
Erasmus University Rotterdam, The Netherlands

Andrew M. Rollins
Case Western Reserve University, USA

David D. Sampson
University of Western Australia, Australia

Herbert Schneckenburger
University of Ulm and Aalen University, Germany

Yuri P. Sinichkin
Saratov National Research State University and Tomsk National Research State University, Russia

Rudolf Steiner
University of Ulm, Germany

Karl Stock
University of Ulm, Germany

Wolfgang S. L. Strauss
University of Ulm, Germany

Valery V. Tuchin
Saratov National Research State University, Tomsk National Research State University, and the Institute of Precision Mechanics and Control, Russia

Olga V. Ushakova
Saratov Technical University, Russia

Sergei R. Utz
Saratov State Medical University, Russia

I. Yu. Yanina
Saratov National Research State Medical University, Russia

Naomichi Yokoi
Asahikawa National College of Technology, Japan

Vladimir P. Zharov
University of Arkansas for Medical Sciences, USA

Dmitry A. Zimnyakov
Saratov Technical University, Russia

George I. Zonios
University of Ioannina, Greece
Part III: Scattering, Fluorescence, Infrared, and Raman Spectroscopy of Tissues

This part of the Handbook describes the basic principles and diagnostic applications of optical techniques based on detecting and processing the scattering, fluorescence, FT IR, and Raman spectroscopic signals from various tissues, with an emphasis on blood, epithelial tissues, and human skin.

Chapter 1 covers the approaches to quantitative measurement of the spontaneous aggregation kinetics of red blood cells in whole blood samples and the biophysical and clinical importance of these measurements. It is shown that real-time measurement of the backscattered light intensity provides information on a number of important characteristics of blood related to the hemorhological status of the donor. Although there are a number of parameters influencing the aggregation and disaggregation measurements, statistically significant correlations with different diseases can be obtained that have high diagnostic value for clinicians. The relation of blood aggregation and sedimentation measurements is also discussed. It is shown that the new emerging modality of laser manipulation and trapping (laser tweezers) is very helpful when studying the individual features of interaction between cells, measuring the corresponding forces and the kinetics of cells aggregation and disaggregation.

Chapter 2 overviews the principles and applications of light scattering spectroscopy of epithelial tissues. It describes novel techniques capable of identifying and characterizing pathological changes in these tissues at the cellular and sub-cellular levels and providing structural and functional information about the tissue. The discussion is focused on studying epithelial morphology in living tissues without tissue removal aiming at noninvasive or minimally invasive detection of precancerous and early cancerous changes in a variety of organs such as esophagus, colon, uterine cervix, oral cavity, lungs,
and urinary bladder. The main goal of this chapter is to provide the readers with basic tools necessary to understand the potentials of biomedical light scattering spectroscopy, including sufficient medical and biological background and principles of light scattering by cells and sub-cellular structures. The relation of single and multiple scattering in tissue is particularly considered. Finally, the applications of various types of light scattering in detection of early cancer and precancerous conditions are reviewed. In addition, several recently developed clinical tools are described including the endoscopic polarized scanning spectroscopy (EPSS) instrument, which is compatible with existing endoscopes. It scans large areas of the esophagus chosen by the physician and has the software and algorithms necessary to obtain quantitative, objective data about tissue structure and composition, which can be translated into diagnostic information in real time. This process enables the physician to take confirming biopsies at suspicious sites and minimize the number of biopsies taken at nondysplastic sites. Another newly developed technique, called confocal light absorption and scattering spectroscopic (CLASS) microscopy, combines light-scattering spectroscopy (LSS) with confocal microscopy. In CLASS microscopy, light-scattering spectra are the source of the contrast. Another important aspect of LSS is its ability to detect and characterize particles well beyond the diffraction limit.

Chapter 3 discusses the applications of reflectance and fluorescence spectroscopies for the assessment of the optical properties of human skin in relation to different diseases, environmental factors, and the effectiveness of various treatments. Applied to the skin \textit{in vivo}, these techniques provide information on the structure of epidermis and dermis, on the quantity and density of blood vessels, on the concentration and spatial distribution of chromophores and fluorophores in skin, and on the nature of skin metabolic processes. The authors discuss the potential advantages and possible applications of the combined use of reflectance and fluorescence spectroscopy of skin for the evaluation of erythema and pigmentation indices, the determination of hemoglobin oxygenation and concentration, and the investigation of the efficacy of topical sunscreens. Simple models are used to analyze changes in skin reflectance and fluorescence spectra as a result of morphological and functional alterations in skin, or as a result of treatment effects. Such changes can be monitored by imaging techniques, in particular, in polarized light and analyzing the color characteristics of the reflected light. Ways to improve the accuracy of skin diagnostics and the efficiency of skin therapy by analyzing and controlling the skin optical parameters are also discussed in this chapter. In particular, the authors demonstrate how to control the sensitivity of skin reflectance spectra by compression and stretching. A special emphasis is made on the potentialities of immersion optical clearing and corresponding decrease in the scattering coefficient in tissue studies. Ways to raise the efficiency of optical clearing, e.g., by
accelerating the penetration of the index-matching compounds by enhancing skin permeability through creating a lattice of microzones (islets) of limited thermal damage in the stratum corneum, are also discussed.

Chapter 4 discusses the basic principles and potentialities of in vivo diagnostics of human skin by vibrational spectroscopic techniques, namely, Fourier transform infrared spectroscopy and confocal Raman microspectroscopy. The detailed information on the molecular composition, structure, and organization of the skin and, in particular, the content of water and natural moisturizing factor in human skin epidermis that can be obtained with these techniques is highlighted. The results of the research, reviewed in this chapter, provide the means for various applications of these techniques in cosmetics, pharmacology, clinical diagnosis, treatment monitoring, and surgery. A large part of the chapter is devoted to the resonance Raman spectroscopy of cutaneous carotenoids. These substances form an antioxidant network of living skin and quick in vivo measurement of their amount in skin is very important when estimating the status of a human organism. Distribution of carotenoids in the human skin and the factors influencing their concentration are discussed.

Finally, Chapter 5 overviews different fluorescence technologies used in biomedical diagnostics. It provides information on the basic principles of fluorescence spectroscopy, microscopy, and imaging, including the continuous-wave, time-gated, and time-resolved variants. Theory and applications to cell biology of total internal reflection fluorescence spectroscopy and microscopy, energy transfer spectroscopy and wide-field 3D microscopy (including structured illumination and light sheet microscopies) are described in detail. This is followed by a discussion of the principles as well as current and possible future applications of laser scanning and multiphoton microscopy. In the last part of the chapter, the super-resolution and single-molecule detection possibilities are briefly discussed.

Overall, the chapters provide readers with knowledge of a very important and quickly developing field of optical biomedical diagnostics.

Alexander V. Priezzhev
Juergen Lademann
Co-editors