Index

1/f noise, 123
3CCD cameras, 116

A
active pixel sensor (APS), 117
aperture stop, 42
aspect ratio, 42, 94
atmospheric model, 104
atmospheric transmittance, 10, 106
atmospheric window, 106
attenuation coefficient, 106
azimuth, 41, 42

B
bar target, 60
Beer’s law, 106
blackbody, 12, 13, 50
blackbody radiation, 11
bolometer, 121
boresight, 41
broadband, 16, 48

C
calibration, 125
camera, 3, 45
charge-coupled device (CCD), 113, 124
CIE standard observer, 115
color CCD, 115
complementary metal-oxide semiconductor (CMOS), 113, 117
conservation of energy, 17
content domain, 96
covert illumination, 73
critical target dimension, 103
current responsivity, 53
cutoff wavelength, 112
day/night imager, 73
definition, 5, 27
diffuse reflectance, 18
diffuse surface, 11
discrimination, 100
EIA 170 standard, 93
emission, 10
Exchangeable Image Format (EXIF), 89
extinction coefficient, 106

D
f-number (f/#), 39, 40
Federal Aviation Administration (FAA), 131
field of view (FOV), 42
field stop, 42
fixed pattern noise (FPN), 125
fixed-wing platform, 42
flux, 11, 16
focal length, 39, 54
four-bar target, 60, 81, 82
forward-looking infrared (FLIR), 97, 100
frame rate, 92, 95
frame transfer, 114
G

gap energy, 111
gimbal, 68, 69
Global Hawk, 3, 65–67
global scan, 93
grazing incidence, 20
ground sample distance (GSD), 23,
43, 44, 96, 103

H

heading, 90, 91
high definition (HD), 5
horizontal blanking, 94,
hyperspectral imaging, 2, 35, 47–49

I

instantaneous field of view (IFOV),
5, 23, 24
imagery interpretability rating scale (IIRS), 97
imager, 1–3
imagery analysis, 97, 98, 137
imagery authentication, 89
incoherent sources, 28
intelligence, surveillance, and reconnaissance (ISR), 2, 5
interlaced scan, 92, 94
interline transfer, 113, 114
interoperability, 95
irradiance, 31–36

J

Johnson noise, 122

K

Kirchoff’s law, 16, 17

L

Lambert’s law, 106,
Lambert–Bouguer–Beer law, 106
Lambertian approximation, 18, 20
laser rangefinder, 69
laser target designator, 67, 73

line of sight (LOS), 68
long-wave infrared (LWIR), 5, 11,
14, 15
LOWTRAN, 104

M

magnification, 40
medium-wave infrared (MWIR), 5,
10, 11, 15
metadata, 41, 89–91
micro-UAV, 65
microbolometer, 73, 120–122
microbridge, 121
microlens, 117
minimum resolvable temperature difference (MRTD), 81–85
MODTRAN, 104
modulation
modulation transfer function (MTF), 59, 60, 61
motion imagery, 45, 91, 96
Motion Imagery Standards Board (MISB), 90, 91, 107
MPEG-2, 91
multirotor platform, 42

N

nadir, 41, 70, 72
National Imagery Interpretability Rating Scale (NIIRS), 5, 96–100,
103
National Institute of Standards and Technology (NIST), 9
National Television Systems Committee (NTSC), 93-95
near-infrared (NIR), 5, 11
noise, 53–56, 76–79, 122–125
noise equivalent bandwidth,
56, 78
noise equivalent irradiance (NEI), 2,
57, 58
noise equivalent power (NEP), 53,
nose equivalent radiance (NEL), 54,
noise equivalent reflectance
difference (NEΔρ), 58, 77
noise equivalent spectral radiance
(NESR), 56
noise equivalent temperature
difference (NETD), 76, 79
noise voltage, 77, 122
non-uniformity correction (NUC),
73, 125
Normalized Difference Vegetation
Index (NDVI), 2, 48
numerical integration, 14, 50

O
optical invariant, 29

P
path length, 106, 107
path radiance, 105
Phase Alternate Line (PAL), 93–95
photon noise, 80, 123, 124
photoresponse nonuniformity
(PRNU), 125
pitch, 71
pixel, 23
Planck equation, 32, 36,
platform, 3, 65–68
Predator, 3, 4, 66
probability of detection, 69, 100
probability of identification, 100
probability of recognition, 100,
102–103
progressive scan, 92–94

Q
quantization noise, 124

R
radian, 23
radiance, 27, 28
radiance invariance, 28
radiant exitance, 32
radiant intensity, 33
radiant power, 34
radiative transfer, 29,
radiative transfer code, 104, 105
radiator, 13
radiometry, 9
Raven, 4, 66
reconnaissance, 2, 5, 67
reflection, 9–11, 15
relative azimuth angle, 41
relative elevation angle, 41
resistance, 118–121
resolution, 47, 59
responsivity, 53, 112
roll angle, 91
rolling scan, 92,
root-mean-square (rms), 53

S
sensor, 3, 9
short-wave infrared (SWIR), 5, 11
shot noise, 122
size, weight, and power (SWaP), 5,
45, 67
slant range, 45
Society of Motion Picture and
Television Engineers (SMPTE), 91
spectral irradiance, 34
spectral radiance, 27, 34
spectral radiant intensity, 34
spectrum, 4, 5, 9
standard definition (SD), 5
Stefan–Boltzmann law, 13
steradian, 25
surveillance, 2, 5, 67, 134
swarm, 67
synthetic aperture radar (SAR),
3, 9, 67

T
target transform probability
function (TTPF), 102
target wheel, 82
thermal equilibrium, 16, 17
<table>
<thead>
<tr>
<th>Term</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>thermal noise, see Johnson noise</td>
<td></td>
</tr>
<tr>
<td>thermalization loss</td>
<td>111, 112</td>
</tr>
<tr>
<td>throughput</td>
<td>29</td>
</tr>
<tr>
<td>traceability</td>
<td>9</td>
</tr>
<tr>
<td>uncooled thermal microbolometer</td>
<td>73</td>
</tr>
<tr>
<td>unmaned aerial vehicle (UAV)</td>
<td>1–6</td>
</tr>
<tr>
<td>V-NIIRS</td>
<td>5, 96</td>
</tr>
<tr>
<td>vertical blanking</td>
<td>94</td>
</tr>
<tr>
<td>video</td>
<td>91</td>
</tr>
<tr>
<td>voltage responsivity</td>
<td>120</td>
</tr>
<tr>
<td>Wien displacement law</td>
<td>12, 14, 75</td>
</tr>
</tbody>
</table>
Barbara Grant received a B.A. in Mathematics from San Jose State University in 1983 and a M.S. in Optical Sciences from The University of Arizona in 1989. Her career spans more than three decades and has included employment with Lockheed Martin and NASA contractors, as well as two decades of self-employment. Her interests include imagery analysis, radiometric systems, remote sensing, and calibration. She teaches professional engineers and scientists at meetings of SPIE, through the Optical Engineering and Optical Instrument Design Program at University of California-Irvine Extension, and through commercial firms and government agencies. This book is her third for SPIE Press, the others being Field Guide to Radiometry (2011) and The Art of Radiometry (2010), which she co-authored with the late Jim Palmer. A lifelong student of the art of rhetoric, she trains professionals in public speaking as well as in science.