Index

A
- *ab initio* design, 376, 379
- absorbing boundary condition (ABC), 162, 268
- Airy–Gauss beam, 315
- aluminum layer, 342
- Ampere’s law, 294
- analytic Green’s function, 229
- anisotropic medium, 388
- anomalous dispersion, 322
- arrow of time, 43
- associated Legendre polynomials, 360

B
- backward finite difference (BFD), 36
- backward-wave equation, 163
- Bessel beam, 314
- Bessel equation, 299
- Bessel function, 299
- Bessel recursion, upward, 33
- bifurcation, 42
- bilayer WGP, 382–383
- blue filter, 372
- boundary conditions, 196
- Brownian motion, 52

C
- Cauchy’s integral theorem, 255
- causality, 252
- central finite difference (CFD), 20
- central nonstandard FD, 39
- chaos, 42
- characteristic matrix, 342, 378, 388
- classical Doppler shift, 124
- cobweb graph, 35
- collision frequency, 323
- complete orthonormal set, 91
- complex frequency, 106
- complex permittivity, 249
- complex refractive index, 107, 319
- complex wavenumber, 107, 151
- computational boundary, 268
- computational noise, 147
- conduction current, 246
- constitutive relations, 251
- constrained optimization, 390
- continuity equation, 244
- continuous-wave multifrequency, 179
- convolution theorem, 251, 259
- Courant–Friedrich–Levy (CFL), 233

D
- damped harmonic oscillator, 73
- damped wave equation with a source, 111
- decay equation, 35
- deformation sensor, 317
- delta function, 89
- delta function derivative, 90
- devil in the DFT, 178, 181
- dielectric cylinder, 225
- diffusion equation, 47
dimensionality and intensity falloff, 205
discrete Green’s function (DGF), 79, 94, 188, 227
discrete Green’s function solutions, 230
dispersive medium, 257
divergence theorem, 244
double-step standard central FD approximation, 75
Drude dispersion, 324
Drude model, 323
Drude–Lorentz, 322
E effective index of refraction, 145, 180–181, 380
effective medium, 378
eigenfrequencies, 102
eigenfunctions, 102
electric and magnetic field layout, 264, 267
electromagnetic boundary conditions, 250
electromagnetic field layout, 284, 290
elliptical cross-sections, 361
Engquist–Majda, 211
error of nonstandard FDTD, 199
error of standard FDTD, 197
evanescent coupling, 317
exact ABC, 164
exact nonstandard ABC, 167
exact NS-FD model, 174
expansion of the derivative, 20
extinction cross-section, 336
extinction efficiency, 342
extinction spectra, 356, 359
F filters, 371
finite speed of light, 148
first-order accuracy, 164
forced damped harmonic oscillator, 73, 76
forward finite difference (FFD), 19
forward-wave equation, 163
four-momentum, 131
Fourier sum, 102
Fourier transform, 251
fourth-order FD, 4, 69
fourth-order FD model, 83
fourth-order FDTD, 70–71
fractal, 54
frequency domain permittivity, 253
fuzzy inclusion function, 221
fuzzy model, 221, 223–224
fuzzy representation, 293
G Galilean transformation, 122
gallium arsenide, 382
gamma function, 24
Gaussian beam, 313
Gaussian turn-on function, 111
general Laplacian FD expression, 11
general NS-FD, 5
general solution, 1D wave equation, 97
genetic algorithm, 324
geometry of space–time, 148
grating, 364
Green’s function, 73, 87
Green’s function for the wave equation, 109
H Hankel functions, 299
harmonic point source, 109, 273
Helmholtz equation, 91, 298
Hermitian matrix, 346
I index of refraction, 103
inner product, 90
insulator layer, 369
inverse Fourier transform, 253
inverse Z transform, 95

K
kinetic energy density of a wave, 120
Kramers–Kronig relations, 253

L
Laplace equation, 45
Laplacian, 6, 9, 10, 13, 15, 16, 18, 298, 401
Lie generator, 19
linear media, 245
liquid crystal display (LCD), 376
localized surface plasmon resonance (LSPR), 351
logistic equation, 41
Lorentz invariant, 131
Lorentz model, 319
Lorentz transformation, 126
LSPR tuning, 360

M
magnetic charge, 244
magnetic monopoles, 244
magnetic permeability, 273
Malthus, 40
Maxwell’s equations, 241
metal–insulator–metal, 353, 363–364
metal layers, 365
metal nanoparticles, 351
metal nanostructures, 351
metals, 249, 257
metamaterials, 262
Mie expansion coefficients, 307
Mie regime, 225
Mie theory, 225, 296
Minkowski space, 130
monochromatic recursive convolution (MRC) FDTD, 323
monochromatic solutions, 100
multilayer WGPs, 378
Mur ABC, 213

N
nanocylinders, 359
nanowire pair, 358
Neumann function, 299
non-Hermitian matrix, 346
nonconducting medium, 246
nondispersive medium, 257
noninteger-order derivatives, 62
nonlinear equations, 41
nonlinear optics, 44
nonstandard FDTD spectrum calculation, 179
nonstandard FDTD stability, 233
nonstandard FDTD with a turn-on function, 155
nonstandard finite difference (NS-FD) model, 145
nonstandard finite difference (NS-FD), 5, 150
nonstandard intensity calculation, 168
nonstandard Mur ABC, 217–218, 220
nonstandard source, 177
nonstandard Yee algorithm, 269
nonstandard Yee model, 269
nontransparent materials, 319
normal dispersion, 322
numerical dispersion, 322
numerical stability, 146
numerical stability for NS-FDTD, 200
Nyquist limit, 146, 198

O
objects on the grid, 220
Occam’s razor, 29
P
parallel relaxation, 49, 57
partial fraction expansion, 95
perfect absorbing boundary, 176
perfectly matched layer (PML), 220
period doubling, 42
periodic computational boundary, 162, 268
phase velocity, 100
photonic crystal, 313
plasma frequency, 323
plastic films, 387
point source in three dimensions, 204
point source in two dimensions, 203
Poisson’s equation, 45
potential energy density of a wave, 120
Poynting vector, 335
precursor, 147
precursor signal, 192
precursor waves, 167
pressure sensor, 317

Q
quantum computing, 317

R
random walk model, 52
recursive convolution, 322
recursive convolution algorithm, 333
recursive convolution (RC) FDTD, 323
reflecting computational boundary, 159, 268
reflection coefficient, 381
relaxation algorithm, 46
resonance, 306
round-off error, 32

S
scattered field in NS-FDTD, 210
scattered-field wave equation, 206
scattering cross-section, 335
scattering efficiency, 342
second-order accuracy, 165
second-order standard FD, 142
separation of variables, 101
serial relaxation, 50, 57
sgn function, 94
silicon, 382
silver layer, 342
silver nanocylinders, 354–356
small ellipsoids, 360
source amplitudes in S- and NS-FDTD, 175
source current, 246
source of the scattered field, 210
stability of the NS-Mur ABC, 240
stability of the S-Mur ABC in three dimensions, 239
stability of the S-Mur ABC in two dimensions, 238
staircase model, 221, 224
standard model of the scattered field, 207
standard Mur ABC, 213, 218, 220
standard Yee algorithm, 264
standard Yee model, 263
step function, 92
stochastic algorithm, 52
stochastic difference equation, 53
Stokes theorem, 294

T
TE polarization, 288
TE resonances, 307
thin film layers, 380
thin film, 342
time reversal, 158
TM polarization, 284
TM resonances, 308
transient devils, 154
transparent dielectric, 322
truncation error, 32
U	unconditional instability, 38, 85
	unconditional stability, 34
	uniform magnetic permeability, 292
	unit system, 245
	unstable algorithm, 32
V	vector identities, 246
	Verhulst model, 41
W	wave equation Green’s function in three dimensions, 202
	wave equation with a source, 108, 152
	wavelength separator, 317
	wavelength-selective polarizing reflector (WSPR), 392–393, 388
	whispering gallery mode, 278, 380
	wire-grid polarizers, 376
Y	Yee algorithm, 260
Z	Z transform, 95
James B. Cole has a B.S. in Physics from the Illinois Institute of Technology and an M.S. in Information Engineering from the University of Illinois-Chicago, where he developed an interest in optics. He finished his Ph.D. in high-energy particle physics at the University of Maryland. His career has thus been broadly interdisciplinary but focused mainly on numerical modeling and simulation in the field of optics and photonics. His specialty is the development of high-precision algorithms with low computational cost. During post-doctoral research at the NASA Goddard Space Flight Center, James began his career in numerical simulation by computing the expected observable flux of antiprotons in cosmic rays. He was subsequently a research physicist at the US Army Research Laboratory, and later the US Naval Research Laboratory, where he developed high-accuracy algorithms on parallel supercomputers to compute wave propagation. He was a visiting professor at the Nippon Telegraph and Telephone Corp. Basic Research Laboratory (Japan), where he taught a class on Lie group theory and developed mathematical models of visual processing and pattern recognition. Later, he was a visiting scientist at the Japanese Physical Chemical Research Institute (RIKEN). James has been a professor at the University of Tsukuba (Japan), where he initiated and guided numerous research projects in computational photonics and taught classes in numerical computation and modeling. He is now a visiting professor at the US Army Research Laboratory and works on computational projects to design advanced optical instruments and devices.

Saswatee Banerjee is a Senior Optical Scientist and has been working for corporate research and development in Japan for the last 11 years. She is a member SPIE and a senior member of the Optical Society of America (OSA). She received Ph.D. degrees in Applied Physics with specialization in Optics from both the University of Calcutta, India and the University of Tsukuba, Japan in 2001 and 2005, respectively. In India she was awarded Junior and Senior Research Fellowships by the University Grants Commission (UGC) and Council of Scientific and Industrial Research (CSIR). In Japan she was awarded a Science and Technology Scholarship by the Ministry of Education, Culture, and Sports. Her research interest is in design and simulation of optical devices that incorporate subwavelength-scale modulation. She has pioneered important advances in high-precision photonics computation and holds numerous patents in the field of optical technology. Dr. Banerjee is the author of numerous peer-reviewed scientific papers and has co-authored three book chapters.