Energy Harvesting for Low-Power Autonomous Devices and Systems
Tutorial Texts Series

- Practical Electronics for Optical Design and Engineering, Scott W. Teare, Vol. TT107
- Automatic Target Recognition, Bruce J. Schachter, Vol. TT105
- Design Technology Co-optimization in the Era of Sub-resolution IC Scaling, Lars W. Liebmman, Kaushik Vaidyanathan, and Lawrence Pileggi, Vol. TT104
- Special Functions for Optical Science and Engineering, Vasudevan Lakshminarayanan and L. Srinivasa Varadharajan, Vol. TT103
- Discrimination of Subsurface Unexploded Ordnance, Kevin A. O’Neill, Vol. TT102
- Introduction to Metrology Applications in IC Manufacturing, Bo Su, Eric Solecky, and Alok Vaid, Vol. TT101
- Introduction to Liquid Crystals for Optical Design and Engineering, Sergio Restaino and Scott Teare, Vol. TT100
- Design and Implementation of Autostereoscopic Displays, Byoungho Lee, Soon-gi Park, Keeloon Hong, and Jisoo Hong, Vol. TT99
- Ocean Sensing and Monitoring: Optics and Other Methods, Weilin Hou, Vol. TT98
- Interferometry for Precision Measurement, Peter Langenbeck, Vol. TT94
- Modeling the Imaging Chain of Digital Cameras, Robert D. Fiete, Vol. TT92
- Biomimxescence and Fluorescence for In Vivo Imaging, Lubov Brovko, Vol. TT91
- Polarization of Light with Applications in Optical Fibers, Arun Kumar and Ajay Ghatak, Vol. TT90
- Digital Fourier Optics: A MATLAB Tutorial, David G. Voeltz, Vol. TT89
- Optical Design of Microscopes, George Seward, Vol. TT88
- Nanotechnology: A Crash Course, Raúl J. Martin-Palma and Akhlesh Lakhtakia, Vol. TT86
- Direct Detection LADAR Systems, Richard Richmond and Stephen Cain, Vol. TT85
- Optical Design: Applying the Fundamentals, Max J. Riedl, Vol. TT84
- Fundamentals of Polarimetric Remote Sensing, John Schott, Vol. TT81
- The Design of Plastic Optical Systems, Michael P. Schaub, Vol. TT80
- Fundamentals of Photonics, Chandra Roychoudhuri, Vol. TT79
- Matrix Methods for Optical Layout, Gerhard Kloos, Vol. TT77
- Fundamentals of Infrared Detector Materials, Michael A. Kinch, Vol. TT76
- Biomimxescence for Food and Environmental Microbiological Safety, Lubov Brovko, Vol. TT74
- Introduction to Image Stabilization, Scott W. Teare and Sergio R. Restaino, Vol. TT73
- Introduction to Confocal Fluorescence Microscopy, Michiel Müller, Vol. TT69
- Artificial Neural Networks: An Introduction, Kevin L. Priddy and Paul E. Keller, Vol. TT68
- Basics of Code Division Multiple Access (CDMA), Raghvender Rao and Sohail Dianat, Vol. TT67
- Optical Imaging in Projection Microolithography, Alfred Kwok-Kit Wong, Vol. TT66
- Metrics for High-Quality Specular Surfaces, Lionel R. Baker, Vol. TT65
- Field Mathematics for Electromagnetics, Photonics, and Materials Science, Bernard Maxum, Vol. TT64
- High-Fidelity Medical Imaging Displays, Aldo Badano, Michael J. Flynn, and Jerzy Kanicki, Vol. TT63

(For a complete list of Tutorial Texts, see http://spie.org/publications/books/tutorial-texts.)
Energy Harvesting
for Low-Power Autonomous Devices and Systems

Jahangir Rastegar
Harbans S. Dhadwal

Tutorial Texts in Optical Engineering
Volume TT108

SPIE PRESS
Bellingham, Washington USA
Introduction to the Series

Since its inception in 1989, the Tutorial Texts (TT) series has grown to cover many diverse fields of science and engineering. The initial idea for the series was to make material presented in SPIE short courses available to those who could not attend and to provide a reference text for those who could. Thus, many of the texts in this series are generated by augmenting course notes with descriptive text that further illuminates the subject. In this way, the TT becomes an excellent stand-alone reference that finds a much wider audience than only short course attendees.

Tutorial Texts have grown in popularity and in the scope of material covered since 1989. They no longer necessarily stem from short courses; rather, they are often generated independently by experts in the field. They are popular because they provide a ready reference to those wishing to learn about emerging technologies or the latest information within their field. The topics within the series have grown from the initial areas of geometrical optics, optical detectors, and image processing to include the emerging fields of nanotechnology, biomedical optics, fiber optics, and laser technologies. Authors contributing to the TT series are instructed to provide introductory material so that those new to the field may use the book as a starting point to get a basic grasp of the material. It is hoped that some readers may develop sufficient interest to take a short course by the author or pursue further research in more advanced books to delve deeper into the subject.

The books in this series are distinguished from other technical monographs and textbooks in the way in which the material is presented. In keeping with the tutorial nature of the series, there is an emphasis on the use of graphical and illustrative material to better elucidate basic and advanced concepts. There is also heavy use of tabular reference data and numerous examples to further explain the concepts presented. The publishing time for the books is kept to a minimum so that the books will be as timely and up-to-date as possible. Furthermore, these introductory books are competitively priced compared to more traditional books on the same subject.

When a proposal for a text is received, each proposal is evaluated to determine the relevance of the proposed topic. This initial reviewing process has been very helpful to authors in identifying, early in the writing process, the need for additional material or other changes in approach that would serve to strengthen the text. Once a manuscript is completed, it is peer reviewed to ensure that chapters communicate accurately the essential ingredients of the science and technologies under discussion.

It is my goal to maintain the style and quality of books in the series and to further expand the topic areas to include new emerging fields as they become of interest to our reading audience.

James A. Harrington
Rutgers University
Contents

Preface xi

1 Energy Harvesting 1

1.1 Introduction 1
1.2 Thermal-to-Electrical-based Energy Harvesting 3
1.3 Solar-to-Electrical-based Energy Harvesting 4
1.4 Radio-Frequency-to-Electrical-based Energy Harvesting 4
1.5 Sources of Energy from Human Activity 4
1.6 Mechanical-to-Electrical-based Energy Harvesting 6
References 7

2 Mechanical-to-Electrical Energy Conversion Transducers 9

2.1 Introduction 9
2.2 Piezoelectric Transducers 10
 2.2.1 Polycrystalline piezoelectric ceramics 11
 2.2.2 Piezoelectric polymers and polymer–ceramic composites 17
 2.2.3 Single-crystal piezoelectric ceramics 17
 2.2.4 Lead-free piezoelectric materials 18
 2.2.5 Piezoelectric materials for high-temperature applications 19
 2.2.6 Other piezoelectric material types and structures 20
2.3 Electromagnetic Induction Transducers 20
2.4 Electrostatic Transducers 23
 2.4.1 Electret-based electrostatic transducers 26
2.5 Magnetostrictive-Material-based Transducers 28
2.6 General Comparison of Different Transducers 29
2.7 Transducer Shelf Life and Operational Life 30
References 31

3 Mechanical-to-Electrical Energy Transducer Interfacing Mechanisms 53

3.1 Introduction 53
3.2 Interfacing Mechanisms for Piezoelectric-based Transducers 58
 3.2.1 Interfacing mechanisms for potential energy sources and continuous rotations 58
 3.2.2 Interfacing mechanisms for continuous oscillatory translational and rotational motions 63
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.2.2.1</td>
<td>Should a vibration-based energy-harvesting device be designed for excitation at resonance?</td>
<td>64</td>
</tr>
<tr>
<td>3.2.3</td>
<td>Interfacing mechanisms for periodic oscillatory translational and rotational motions of the host system</td>
<td>66</td>
</tr>
<tr>
<td>3.2.3.1</td>
<td>“High-Frequency” periodic oscillatory motions of the host system</td>
<td>66</td>
</tr>
<tr>
<td>3.2.3.2</td>
<td>“Low-Frequency” periodic oscillatory motions of the host system</td>
<td>67</td>
</tr>
<tr>
<td>3.2.3.2.1</td>
<td>Two-stage interfacing mechanisms</td>
<td>70</td>
</tr>
<tr>
<td>3.2.3.2.2</td>
<td>Interfacing mechanisms for direct doubling of input oscillatory motion frequency</td>
<td>74</td>
</tr>
<tr>
<td>3.2.3.2.3</td>
<td>Interfacing mechanisms to generate higher frequencies of the input oscillatory motions</td>
<td>77</td>
</tr>
<tr>
<td>3.2.3.2.4</td>
<td>Provision of position-dependent external forcing functions</td>
<td>79</td>
</tr>
<tr>
<td>3.2.3.2.5</td>
<td>Methods to develop relatively small and lightweight structures with low natural frequencies</td>
<td>82</td>
</tr>
<tr>
<td>3.2.4</td>
<td>Interfacing mechanisms for oscillatory translational and rotational motions with highly varying frequencies and random motions</td>
<td>83</td>
</tr>
<tr>
<td>3.2.5</td>
<td>Interfacing mechanisms for energy harvesting from short-duration force and accelerating/decelerating pulses</td>
<td>84</td>
</tr>
<tr>
<td>3.3</td>
<td>Interfacing Mechanisms for Electromagnetic-based Transducers</td>
<td>87</td>
</tr>
<tr>
<td>3.3.1</td>
<td>Interfacing mechanisms for rotary input motions</td>
<td>88</td>
</tr>
<tr>
<td>3.3.2</td>
<td>Interfacing mechanisms for continuous oscillatory translational and rotational motions</td>
<td>89</td>
</tr>
<tr>
<td>3.3.3</td>
<td>Interfacing mechanisms for energy harvesting from short-duration force and acceleration pulses</td>
<td>92</td>
</tr>
<tr>
<td>3.4</td>
<td>Interfacing Mechanisms for Electrostatic- and Magnetostrictive-based Transducers</td>
<td>92</td>
</tr>
<tr>
<td>References</td>
<td></td>
<td>93</td>
</tr>
<tr>
<td>4</td>
<td>Collection and Conditioning Circuits</td>
<td>103</td>
</tr>
<tr>
<td>4.1</td>
<td>Introduction</td>
<td>103</td>
</tr>
<tr>
<td>4.2</td>
<td>Collection and Conditioning Circuits for Piezoelectric Transducers</td>
<td>106</td>
</tr>
<tr>
<td>4.2.1</td>
<td>Direct rectification and conditioning methods</td>
<td>106</td>
</tr>
<tr>
<td>4.2.2</td>
<td>Circuits to maximize harvested energy</td>
<td>107</td>
</tr>
<tr>
<td>4.2.3</td>
<td>Collection circuits</td>
<td>109</td>
</tr>
<tr>
<td>4.2.4</td>
<td>Conditioning circuits</td>
<td>113</td>
</tr>
<tr>
<td>4.2.4.1</td>
<td>Standard AC–DC interface</td>
<td>113</td>
</tr>
<tr>
<td>4.2.4.2</td>
<td>Synchronized switch harvesting on inductor</td>
<td>114</td>
</tr>
</tbody>
</table>
Preface

Energy harvesting is an energy-to-energy conversion technology involving processes that generate electrical energy from other sources of energy such as mechanical, thermal, chemical, solar, and radio frequency. Use of mechanical and solar energy represents the most developed technologies and offers solutions over a broad range of energy levels. Solar cells are used to power wrist watches, calculators, and road signs, whereas mechanical-energy-harvesting solutions based on piezoelectric transducers are being used to harvest energy from sources such as vibration or shock loading. Radio-frequency-based harvesters, for example, are finding use in converting ambient electromagnetic energy to power sensor nodes. Conversion of thermal gradients to electrical energy is another promising technology.

This book is restricted to the generation of small amounts of electrical energy on a local scale and for conversion of mechanical potential and kinetic energy to electrical energy. Persons interested in learning more about the fundamental concepts of energy harvesting will find the treatment of relevant topics readable with little prerequisite requirement of engineering topics. This book will be of particular interest to application engineers from diverse disciplines and industries. It provides a fundamental view of the scope of the energy-harvesting technology as well as the trade-offs and limitations for practical systems.

The book will be of interest to those who want to know the potentials as well as shortcomings of energy-harvesting technologies. It is particularly useful for energy-harvesting system design because it provides a systematic approach to: selection of the proper transduction mechanisms, methods of interfacing with a host system, and electrical energy collection and conditioning options.

The book is divided into five chapters. Chapter 1 briefly describes the various energy-conversion processes currently being used in the generation of electrical energy from sources such as solar, radio frequency, thermoelectric, and energy from human activity.

Chapter 2 describes the three primary types of transducers typically used for converting mechanical energy to electrical energy, that is, piezoelectric, electromagnetic, and electrostatic. Magnetostrictive-based transducers are also briefly introduced.
Chapter 3 presents an in-depth analysis of the interfacing mechanisms used for coupling the host system to the energy harvester for effective transfer of mechanical kinetic and/or potential energy to the transducer.

Chapter 4 addresses collection and conditioning circuits needed to extract the generated electrical energy for delivery to a load. The theme of chapters 2, 3, and 4 shows the connection between the three components of an energy-harvesting system, namely, the host interfacing mechanism, the transducer, and the collection and conditioning circuit.

In addition to the design of efficient energy harvesters, this book also discusses how certain types of energy harvesters can be configured to provide self-powered sensing capabilities. Additional circuitry not requiring any external power may also provide further enhancement by including logic functionality. Case studies with particular emphasis on shock-loading-based energy harvesting and sensory applications are presented in Chapter 5.

An extensive list of references is provided to direct the reader to appropriate literature for more in-depth material not covered in the book.

We thank James Harrington, SPIE Tutorial Text Series Editor, for encouraging us to write the book and Tim Lamkins, SPIE Press Manager, for his editorial suggestions and support. We very much appreciate the effort, patience, and guidance provided by Nicole Harris, our editor at SPIE.

Jahangir Rastegar
Harbans S. Dhadwal
New York
December 2016