Plasmonic Optics
Theory and Applications
Tutorial Texts Series

- Optics using MATLAB, Scott W. Teare, TT111
- Plasmonic Optics: Theory and Applications, Yongqian Li, TT110
- Design and Fabrication of Diffractive Optical Elements with MATLAB, Shanti Bhattacharya and Anand Vijayakumar, TT109
- Energy Harvesting, Harbans S. Dhadwal and Jahangir Rastegar, TT108
- Practical Electronics for Optical Design and Engineering, Scott W. Teare, TT107
- Automatic Target Recognition, Bruce J. Schachter, TT105
- Design Technology Co-optimization in the Era of Sub-resolution IC Scaling, Lars W. Liebmann, Kaushik Vaidyanathan, and Lawrence Pileggi, Vol. TT104
- Special Functions for Optical Science and Engineering, Vasudevan Lakshminarayanan and L. Srinivasa Varadarajan, Vol. TT103
- Discrimination of Subsurface Unexploded Ordnance, Kevin A. O’Neill, Vol. TT102
- Introduction to Metrology Applications in IC Manufacturing, Bo Su, Eric Solecky, and Alok Vaid, Vol. TT101
- Introduction to Liquid Crystals for Optical Design and Engineering, Sergio Restaino and Scott Teare, Vol. TT100
- Design and Implementation of Autostereoscopic Displays, Byoungho Lee, Soon-gi Park, Keehoon Hong, and Jisoo Hong, Vol. TT99
- Ocean Sensing and Monitoring: Optics and Other Methods, Weilin Hou, Vol. TT98
- Interferometry for Precision Measurement, Peter Langenbeck, Vol. TT94
- Modeling the Imaging Chain of Digital Cameras, Robert D. Fiete, Vol. TT92
- Bioluminescence and Fluorescence for In Vivo Imaging, Lubov Brovko, Vol. TT91
- Polarization of Light with Applications in Optical Fibers, Arun Kumar and Ajoy Ghatak, Vol. TT90
- Digital Fourier Optics: A MATLAB Tutorial, David G. Voeltz, Vol. TT89
- Optical Design of Microsystems, George Seward, Vol. TT88
- Nanotechnology: A Crash Course, Raúl J. Martin-Palma and Akhlesh Lakhtakia, Vol. TT86
- Direct Detection LADAR Systems, Richard Richmond and Stephen Cain, Vol. TT85
- Optical Design: Applying the Fundamentals, Max J. Riedl, Vol. TT84
- Fundamentals of Polarimetric Remote Sensing, John Schott, Vol. TT81
- The Design of Plastic Optical Systems, Michael P. Schaub, Vol. TT80
- Fundamentals of Photonics, Chandra Roychoudhuri, Vol. TT79
- Matrix Methods for Optical Layout, Gerhard Kloos, Vol. TT77
- Fundamentals of Infrared Detector Materials, Michael A. Kinch, Vol. TT76
- Bioluminescence for Food and Environmental Microbiological Safety, Lubov Brovko, Vol. TT74
- Introduction to Image Stabilization, Scott W. Teare and Sergio R. Restaino, Vol. TT73
- Introduction to Confocal Fluorescence Microscopy, Michiel Müller, Vol. TT69

(For a complete list of Tutorial Texts, see http://spie.org/publications/books/tutorial-texts.)
Library of Congress Cataloging-in-Publication Data

Names: Li, Yongqian (Professor), author.
Title: Plasmonic optics : theory and applications / Yongqian Li.
Other titles: Tutorial texts in optical engineering ; v. TT 110.
LC record available at https://lccn.loc.gov/2016053891

Published by
SPIE
P.O. Box 10
Bellingham, Washington 98227-0010 USA
Phone: +1 360.676.3290
Fax: +1 360.647.1445
Email: books@spie.org
Web: http://spie.org

Copyright © 2017 Society of Photo-Optical Instrumentation Engineers (SPIE)

All rights reserved. No part of this publication may be reproduced or distributed in any form or by any means without written permission of the publisher.

The content of this book reflects the work and thought of the authors. Every effort has been made to publish reliable and accurate information herein, but the publisher is not responsible for the validity of the information or for any outcomes resulting from reliance thereon.

Printed in the United States of America.
First Printing.
For updates to this book, visit http://spie.org and type “TT110” in the search field.
Introduction to the Series

Since its inception in 1989, the Tutorial Texts (TT) series has grown to cover many diverse fields of science and engineering. The initial idea for the series was to make material presented in SPIE short courses available to those who could not attend and to provide a reference text for those who could. Thus, many of the texts in this series are generated by augmenting course notes with descriptive text that further illuminates the subject. In this way, the TT becomes an excellent stand-alone reference that finds a much wider audience than only short course attendees.

Tutorial Texts have grown in popularity and in the scope of material covered since 1989. They no longer necessarily stem from short courses; rather, they are often generated independently by experts in the field. They are popular because they provide a ready reference to those wishing to learn about emerging technologies or the latest information within their field. The topics within the series have grown from the initial areas of geometrical optics, optical detectors, and image processing to include the emerging fields of nanotechnology, biomedical optics, fiber optics, and laser technologies. Authors contributing to the TT series are instructed to provide introductory material so that those new to the field may use the book as a starting point to get a basic grasp of the material. It is hoped that some readers may develop sufficient interest to take a short course by the author or pursue further research in more advanced books to delve deeper into the subject.

The books in this series are distinguished from other technical monographs and textbooks in the way in which the material is presented. In keeping with the tutorial nature of the series, there is an emphasis on the use of graphical and illustrative material to better elucidate basic and advanced concepts. There is also heavy use of tabular reference data and numerous examples to further explain the concepts presented. The publishing time for the books is kept to a minimum so that the books will be as timely and up-to-date as possible. Furthermore, these introductory books are competitively priced compared to more traditional books on the same subject.

When a proposal for a text is received, each proposal is evaluated to determine the relevance of the proposed topic. This initial reviewing process has been very helpful to authors in identifying, early in the writing process, the need for additional material or other changes in approach that would serve to strengthen the text. Once a manuscript is completed, it is peer reviewed to ensure that chapters communicate accurately the essential ingredients of the science and technologies under discussion.

It is my goal to maintain the style and quality of books in the series and to further expand the topic areas to include new emerging fields as they become of interest to our reading audience.

James A. Harrington
Rutgers University
Contents

Preface xi
Acknowledgments xiii

1 Optical Properties of Plasmonic Materials 1
  1.1 Electromagnetic Waves Propagating through Materials 1
    1.1.1 Fundamental equations of electromagnetic waves 1
    1.1.2 Constitutive equations of inhomogeneous media 4
    1.1.3 Isotropic and anisotropic media 6
    1.1.4 Constitutive equations of dielectric media 7
  1.2 Electromagnetic Properties of Materials 9
    1.2.1 Permittivity and permeability 9
    1.2.2 Loss tangent 11
    1.2.3 Penetration depth and skin depth 11
  1.3 Optical Properties of Metals 15
    1.3.1 Free electrons and interband transitions 15
    1.3.2 Harmonic oscillator model 17
    1.3.3 Drude model and Lorentz model 19
    1.3.4 Drude–Lorentz model 23
  1.4 Optical Properties of Dielectric Materials 28
    1.4.1 Dielectric function of dielectric media 28
    1.4.2 Kramers–Kronig relation 29
    1.4.3 Obtaining optical functions from physical observables 30
  1.5 Effective Medium Approach for Composite Nanostructures 31
    1.5.1 Effective medium theory 31
    1.5.2 Topologies of metal–dielectric composites 32
    1.5.3 Lorentz cavity model 32
    1.5.4 Maxwell–Garnett theory 34
    1.5.5 Bruggeman medium theory 36

References 38

2 Surface Plasmon Polaritons at Planar Interfaces 41
  2.1 Surface Plasmon Polaritons 41
    2.1.1 Concepts 42
    2.1.2 Dispersion relation 42

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 22 Jul 2019
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use
2.1.3 Requirements 46
2.1.4 Momentum mismatch 47
2.1.5 Dispersion relations in special cases 49
2.2 SPP Propagation Characteristics 51
  2.2.1 Surface plasmon wavelength 51
  2.2.2 Surface plasmon propagation length 52
  2.2.3 Surface plasmon penetration depth 53
2.3 Excitation of Surface Plasmon Polaritons 55
  2.3.1 Evanescent waves 55
  2.3.2 Prism excitation 57
  2.3.3 Corrugated grating excitation 59
  2.3.4 Near-field excitation 60
  2.3.5 Coupling to integrated photonic elements 61
References 63
3 Localized Surface Plasmon Resonances 67
  3.1 Localization of Electromagnetic Waves in Nanocavities and Nanoparticles 68
  3.2 Nanoparticles in a Quasi-Static Approximation 69
    3.2.1 Quasi-static approximation 69
    3.2.2 Potentials inside the particle and the surrounding medium 70
    3.2.3 Electric fields inside a particle and surrounding medium 72
    3.2.4 Resonance surface modes 72
    3.2.5 Damping the plasmon resonance 75
  3.3 Extinction Efficiency of Nanoparticles 76
    3.3.1 Extinction efficiency in Mie theory 76
    3.3.2 Electromagnetic normal modes in Mie resonances 77
    3.3.3 Extinction efficiency for small spherical particles 78
    3.3.4 Extinction coefficient for large spherical particles 82
  3.4 Spectral Properties of Localized Surface Plasmons 83
    3.4.1 Beyond the quasi-static approximation 83
    3.4.2 Spectrum shifting due to surrounding medium 84
    3.4.3 Shape-dependent plasmon extinction spectra 87
  3.5 Surface Plasmon Resonance Affinity Biosensors 90
    3.5.1 Fluorescence enhancement by metal nanoparticles 91
    3.5.2 Localized surface plasmon resonance sensing 92
References 95
4 Extraordinary Transmission through Subwavelength Apertures 99
  4.1 Extraordinary Optical Transmission 100
    4.1.1 Diffraction through subwavelength apertures 100
    4.1.2 Extraordinary optical transmission phenomena 103
    4.1.3 Fano resonance in hole arrays 106
  4.2 Transmission through a Single Aperture 108
Preface

Plasmonic optics—an emerging research field—combines electronics and photonics with nanostructures. It studies the interactions between electromagnetic waves and matter at the nanoscale. The prominent feature of plasmonic optics is the coupling of electromagnetic waves into collective electron oscillations. This peculiar feature enables the localization and enhancement of electromagnetic energy in a novel family of nanodevices, nanoelectronics, and nanosensors. Plasmonics involves many subjects, such as optics, physics, materials, and even chemistry. So far, it has favorable applications in chemical sensors, high-resolution microscopy, photovoltaic cells, biological detection, communication, and medical diagnosis. Each achievement plays a significant role in improving the future.

Federico Capasso, while receiving his 2013 SPIE Gold Medal Award, said, “You can’t go wrong becoming a very strong optical scientist because you can work in many different fields.” Plasmonics is one such field. Many researchers have devoted themselves to it over the last few decades because it provides a compelling risk and promise. That is what makes science so attractive: we are eager to understand the unknown. In fact, we are attracted by the risk to find the next achievement around the corner.

To fulfill the promise offered by plasmonic optics, this book presents a brief introduction to the theory and applications. The first chapter introduces the optical properties of materials. An elementary description of electromagnetic theory is provided. Noble metals, dielectric materials, and semiconductors are frequently used in plasmonic optics; their optical properties are described in terms of the Drude and Lorentz theories. Although the effective optical properties of nanostructures deviate from those of bulk materials, the penetration depths and skin depths play a crucial role in defining plasmonic properties. The end of the chapter discusses the effective medium theory for composite materials.

Surface plasmon polariton (SPP) is a recurring term that requires a clear definition. In this book, SPPs refer to a collective electron oscillation and the associated wave fields that propagate along a metal–dielectric planar interface. Surface plasmon modes are sometimes used to describe the resonance cases of SPPs. When the electron oscillations occur on the curved surface of nanoparticles, these phenomena are called local surface plasmon resonances (LSPRs) because, in most cases, only the resonance conditions of
oscillating charges in nanoparticles are considered. Chapters 2 and 3 address the physical concept and typical applications of SPPs and LSPRs. The scattering and absorption properties of nanoparticles with various geometries are discussed in terms of the Mie theory.

The concepts of SPPs and LSPRs are applied to a series of unusual optical properties/devices: extraordinary optical transmission (OET) through a single aperture or hole arrays (Chapter 4), the waves guiding and confined by the metal–insulator–metal (MIM) and insulator–metal–insulator (IMI) nanostructures (Chapter 5), the radiation/emission enhancement, and the perfect absorption achieved by an optical antenna from visible to infrared wavelengths (Chapter 6). These chapters discuss nanostructures with various geometries for the purpose of achieving plasmonic sensors, including chemical sensors, biosensors, and surface-enhanced spectroscopy.

Chapter 7 briefly introduces the nanofabrication techniques aiming at plasmonic devices. Top-down material-removal methods for elaborate nanostructures, bottom-up synthesis for self-growing nanoparticles, and solution phase methods for assembly geometries are introduced. The optical characterizations of plasmonic nanostructures are briefly reviewed; characterization methods benefit from the significant progress of plasmonic optics and advance its progress in return.

A vast number of applications and various geometries for SPP-enhanced sensing are referenced throughout the text. There is extensive literature contributing to this field. References were selected because of their descriptions of a particular effect or their suitability for a beginner. I would like to thank the authors of the literature cited in this book.

I had to omit a few topics associated with plasmonics due to the scope of this book. These topics include but are not limited to plasmonic cloaking and transformation optics, plasmonic lasers, electromagnetically induced transparency, metamaterials, and metasurfaces; the latter two are huge areas that could be covered in their own texts. Numerical simulation methods are not provided in this book, but interested readers can find them in various available commercial and free software. This Tutorial Text should provide a readable introduction to plasmonic optics with distinct concepts, typical applications, and comprehensive knowledge. A modest amount of primary background knowledge in electromagnetism is sufficient to understand the concepts discussed here. I very much hope that more graduate students and young researchers pursue careers in this fascinating area. Their participation would further enhance the field and help plasmonic optics improve our future life.

Any comments and suggestions are very much appreciated.

Yongqian Li
Northwestern Polytechnical University
P. R. China
December 2016
Acknowledgments

I would like thank the National Natural Science Foundation of China (NSFC-No. 51175436, 51575455), the Aeronautical Science Foundation of China (ASFC-Nos. 20145653029), and the 111 projects from the Chinese Ministry of Education (No. B13044) for their financial support.

I wish to thank Scott McNeill and Tim Lamkins at SPIE Press for all of their efforts in promoting this book. My thanks also go to my students Xiaolun Xu, Binbin Wang, and Weidong Song for their work on the drawings and calculations throughout the text. Of course, thanks to my wife, Xiaorong Qian, for her steady encouragement and lovely inspiration.