OPTICAL INFORMATION PROCESSING

A Tribute to Adolf Lohmann
OPTICAL INFORMATION PROCESSING
A Tribute to Adolf Lohmann

H. John Caulfield
Editor
Contents

Preface / xi

Chapter 1. Information Optics Concepts Applied to Image Formation in Volume Scattering Media / 1
Emmett N. Leith, Kurt D. Mills, Louis Deslaurier, Shawn Grannell, Brian G. Hoover, David S. Dilworth, Hsuan Chen, Marian Shih, Brian D. Athey and Joaquin Lopez

1.1 Introduction / 1
1.2 Research Highlights / 3
1.3 Phase Conjugation / 5
1.4 Spatial Filter Gating / 7
1.5 Three Modalities of Image Formation / 12
References / 19

Chapter 2. A Statistical Introduction to Temporal Coherence Effects in Interferometers / 21
Pierre Chavel and Jean-Michel Jonathan

Foreword / 21
2.1 Introduction / 21
2.2 Elementary Approach / 22
2.2.1 Light detection model / 22
2.2.2 Observing two-beam interferences with two distinct frequencies / 23
2.2.3 Discussion / 24
2.3 Light as a Stationary Stochastic Function and Its Power Spectrum / 26
2.4 Intensity: The Various Aspects / 28
2.4.1 Variance and covariance of instantaneous intensity / 28
2.4.2 Variance and covariance of detected intensity / 29
2.4.3 Numerical example / 30
2.5 The Law of Interference and the Corresponding Fluctuations / 31
2.6 Conclusion / 33
Appendix: Spectral Density and the Wiener-Khintchin Theorem / 33
 A2.1 Principle / 33
 A2.2 Interpretation / 34
 A2.3 Limit for infinite T / 35
 A2.4 Filtering stochastic processes / 36
References / 36
Chapter 3. Wigner Function and Ambiguity Function for Nonparaxial Wavefields / 37
Colin J. R. Sheppard and Kieran G. Larkin

3.1 Introduction / 37
3.2 The Ambiguity Function and the 2D OTF for 2D Wavefields in the Paraxial Approximation / 38
3.3 The Ambiguity Function and the 3D OTF for 3D Wavefields in the Paraxial Approximation / 41
3.4 Derivation of the Angle-impact Wigner Function / 42
3.5 Phase Retrieval / 48
3.6 Other Representations / 51
3.7 Three-Dimensional Wavefields / 53
3.8 Discussion / 54
Acknowledgments / 55
References / 55

Chapter 4. Gabor’s Signal Expansion Based on a Nonorthogonal Sampling Geometry / 57
Martin J. Bastiaans

4.1 Introduction / 57
4.2 Gabor’s Signal Expansion on a Rectangular Lattice / 59
4.3 Fourier Transform and Zak Transform / 61
4.4 Rational Oversampling / 63
4.5 Coherent-optical Generation of the Gabor Coefficients via the Zak Transform / 65
4.6 Discrete Gabor Expansion and Discrete Gabor Transform / 67
4.7 Discrete Fourier Transform and Discrete Zak Transform / 70
4.8 Nonorthogonal Sampling / 71
4.9 Gabor’s Signal Expansion on a Nonorthogonal Lattice / 73
4.10 From Nonorthogonal to Rectangular Sampling via Shearing / 75
4.11 Conclusions / 76
Appendix A Derivation of Equation (4.13) / 77
Appendix B Derivation of Equation (4.14) / 79
References / 81

Chapter 5. Quality Time with the Fractious Fourier Family / 83
Harrison H. Barrett

5.1 Introduction / 83
5.2 Objective Assessment of Image Quality / 84
5.2.1 Tasks and observers / 84
5.2.2 Measures of task performance / 85
5.2.3 Digital imaging systems / 85
5.2.4 Ideal observers for detection tasks / 86
5.2.5 Ideal linear observers / 87
5.2.6 Models for human observers / 87
5.3 Meet the Family / 88
5.3.1 Papa Joe / 88
5.3.2 Grandpa Dan / 89
5.3.3 Dan’s great grandson / 90
5.3.4 Uncle Carl / 90
5.3.5 Cousin Gene / 90
5.3.6 Gene’s erratic twin / 91
5.3.7 Nephew Dennis / 92
5.3.8 The family business / 92
5.3.9 The competitors / 93
5.3.10 The bastard / 94

5.4 Quality Time with the Family / 96
5.4.1 Analog direct imaging / 97
5.4.2 Approximate stationarity and shift invariance / 98
5.4.3 Digital imaging / 99
5.4.4 Fourier crosstalk and induced stationarity / 99

5.5 Conclusions / 101
Acknowledgments / 101
References / 102

Chapter 6. Synthesis of Optical Fields Characterized by Their Mutual
Intensity Functions / 103
M. Alper Kutay, Haldun M. Ozaktas and Serdar Yüksel

6.1 Introduction / 103
6.2 Correlation Matrices and Their Properties / 105
6.3 The Degree of Partial Coherence / 106
6.4 Synthesis of Arbitrary Mutual Intensity Matrices / 108
6.4.1 Fractional Fourier domain-filtering circuits / 110
6.4.2 Synthesis algorithm / 113

6.5 Examples / 115
Example 1 / 115
Example 2 / 117

References / 120

Chapter 7. The Eye, Hartmann, Shack, and Scheiner / 123
Klaus Biedermann

References / 129

Chapter 8. Templates for Invention in the Mathematical and Physical
Sciences with Applications to Optics / 131
H. John Caulfield

8.1 Introduction / 131
8.2 The Do-nothing Machine / 132
8.3 The Continuous Extension / 139
8.4 The Up-down Paradigm / 142
8.5 The Reversal of Fortune / 146
8.6 Conclusion / 147

References / 147
Chapter 9. Transformation of Holographic Wavefields Caused by the
Second-order Nonlinearity of a Nonlinear Recording Material / 149
Yury N. Denisyuk, Alessandra Andreoni, Maria Bondani and Marco A.C. Potenza

9.1 Introduction / 149
9.2 The Electrical Field Reconstructed by an SHG Hologram / 150
9.3 The Image Structure Formed by the Object Wave as Reconstructed by an
SHG Hologram / 152
9.4 Phase Shifts and Scale Changes of the Reconstructed Image Caused by
the Reference Wave / 154
9.5 Experiments on the Resolution and Transformation of Images
Reconstructed by an SHG Hologram / 157
9.6 Experiments on Recording an SHG Hologram of a Diffusing Object / 162
9.7 Transformations of Holographic Wavefields Caused by the Second-order
Nonlinearity in the Case of Down-conversion / 165
9.8 Some Possible Applications of the SHG Hologram for Optical Information
Processing / 169
9.9 Conclusion / 171
Acknowledgments / 171
References / 171

Chapter 10. Spatio-temporal Joint Transform Correlator / 173
Toyohiko Yatagai and Yoshiaki Yasuno

10.1 Introduction / 173
10.2 The ST-JTC Principle / 176
10.3 An Experimental Demonstration of the ST-JTC / 180
10.4 Spectral Interferometric Joint Transform OCT / 181
10.5 Experiments of Spectral Interferometric Joint Transform OCT / 183
10.6 Conclusion / 186
References / 187

Chapter 11. Nonlinear Features for Improved Pattern
Recognition / 189
David Casasent and Ashit Talukder

11.1 Introduction / 189
11.2 ODF Features / 190
11.3 Product Inspection Case Study / 193
11.4 Face Recognition Case Study / 194
11.4.1 Pose estimation (stage 1) / 196
11.4.2 Pose transformation (stage 2) / 196
11.4.3 Recognition phase (stage 3) / 197
11.5 Summary and Conclusion / 198
References / 199
Chapter 12. From Ink Bottles to E-beams: A Historical Perspective of Diffractive Optic Technology / 201
Joseph N. Mait
12.1 The Early Binary Years / 202
12.2 Phase Transitions / 213
12.3 Smaller Features, Bigger Interests / 215
12.4 The Future / 223
12.5 Final Comments and Apologia / 224
References / 226

Chapter 13. From Computer-generated Holograms to Optical Signal Processors / 233
David Mendlovic, Zeev Zalevsky, Eran Gur, Gal Shabtay, Uriel Levy and Emanuel Marom
13.1 Introduction / 233
13.2 Partially Coherent Optical Data Processing / 234
 13.2.1 Fourier optics and Ewald's surfaces of the mutual coherence function / 234
 13.2.2 Display of spatial coherence / 240
 13.2.3 Synthesis of spatial coherence / 244
 13.2.4 Synthesis of hybrid spatial coherence / 248
 13.2.5 The coherence processor / 251
13.3 Optimal Beam-forming / 255
 13.3.1 Motivation / 255
 13.3.2 Optimal three-dimensional beam-forming / 257
 13.3.3 Optimal synthesis of an optical transfer function by use of a phase-only element / 271
13.4 Fuzzy Logic in Electro-optics / 279
 13.4.1 Introduction / 280
 13.4.2 Fuzzy control in optics / 284
 13.4.3 A two-dimensional optical fuzzy controller / 285
 13.4.4 One-dimensional optical fuzzy controller with multiple entries / 297
 13.4.5 A general approach for multidimensional fuzzy control / 304
References / 308

Tsuyoshi Konishi and Yoshiki Ichioka
14.1 Introduction / 311
14.2 Ultrafast Image Transmission System: ULTIMATE / 312
 14.2.1 Basic concept and system / 312
 14.2.2 The T-S transform and its inverse / 314
 14.2.3 The spatial T-F transform and its inverse / 315
 14.2.4 The optical time-to-2D-space conversion system / 316
 14.2.5 Optical 2D-space-to-time conversion system / 321
14.2.6 Preliminary experiment of the ULTIMATE system / 326
14.2.7 Remarks / 327
14.3 Optical Spectrogram Scope / 327
 14.3.1 Interferometric time-of-flight cross-correlation / 328
 14.3.2 System construction / 329
 14.3.3 Experiments / 331
 14.3.4 Discussion / 333
14.4 Ultrafast Optical Routing by Using Temporal Frequency-to-space
 Conversion / 335
 14.4.1 An ultrafast optical routing system / 335
 14.4.2 Experiment / 336
14.5 Summary / 337
 Acknowledgments / 339
 References / 339

Chapter 15. Light Tubes, Wigner Diagrams, and Optical Wave
 Propagation Simulation / 343
William T. Rhodes
15.1 Introduction / 343
15.2 The Light Tube and Its Benefits / 343
15.3 Wigner Diagram Analysis / 348
15.4 Numerical Implementation of the Algorithm / 353
15.5 Summary of Algorithm Characteristics and Discussion / 353
 Acknowledgments / 355
 References / 355
Preface

There are certain people who have particularly enriched not only the field of optics, but our lives as well. We owe the strength and excitement of the recent and ongoing research in the field of optics to these individuals. This book honors one of the recognized masters of optics—Adolf Lohmann. Over a long and continuing career in many countries, Dr. Lohmann has generated new ideas that have propelled the field in new directions. The breadth and brilliance of these insights is breathtaking and well known.

This book is made up of chapters written by the friends and colleagues of Dr. Lohmann, all of whom are respected scientists and engineers in their own right. Several of these chapters are extensions of invited talks given at the 2001 SPIE conference that paid tribute to Adolf Lohmann, the first in a series of conference that will celebrate the Masters of Optics.

The authors of the chapters comprising this volume hope this book is a worthy celebration of the man we honor. It contains new insights into many fields he has helped create, and even has one chapter on the topic of invention itself. All workers who have read and benefited from Professor Lohmann’s work will enjoy this tribute to him.

H. John Caulfield