<table>
<thead>
<tr>
<th>Acronym</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>μTAS</td>
<td>micro total analysis system</td>
</tr>
<tr>
<td>1D</td>
<td>one-dimensional</td>
</tr>
<tr>
<td>2D</td>
<td>two-dimensional</td>
</tr>
<tr>
<td>3D</td>
<td>three-dimensional</td>
</tr>
<tr>
<td>AC</td>
<td>alternating current</td>
</tr>
<tr>
<td>AFM</td>
<td>atomic force microscopy</td>
</tr>
<tr>
<td>ALE</td>
<td>arbitrary lagrangian eulerian</td>
</tr>
<tr>
<td>AlN</td>
<td>aluminum nitride</td>
</tr>
<tr>
<td>ANSI</td>
<td>American National Standards Institute</td>
</tr>
<tr>
<td>AO</td>
<td>adaptive optics</td>
</tr>
<tr>
<td>AOM</td>
<td>acousto-optical modulator</td>
</tr>
<tr>
<td>AR</td>
<td>anti-reflective</td>
</tr>
<tr>
<td>ASIC</td>
<td>application-specific integrated circuit</td>
</tr>
<tr>
<td>ASTM</td>
<td>American Society for Testing and Materials</td>
</tr>
<tr>
<td>AWG</td>
<td>arrayed waveguides</td>
</tr>
<tr>
<td>AWN</td>
<td>acid waste neutralization</td>
</tr>
<tr>
<td>BEM</td>
<td>boundary element method</td>
</tr>
<tr>
<td>BPM</td>
<td>beam propagation method</td>
</tr>
<tr>
<td>BPSG</td>
<td>boron phosphorus doped silicate glass</td>
</tr>
<tr>
<td>CAD</td>
<td>computer-aided design</td>
</tr>
<tr>
<td>CAIBE</td>
<td>chemically assisted ion-beam etching</td>
</tr>
<tr>
<td>CEM</td>
<td>contactless embossing microlenses</td>
</tr>
<tr>
<td>CGH</td>
<td>computer-generated hologram</td>
</tr>
<tr>
<td>CMOS</td>
<td>complementary metal-oxide semiconductor</td>
</tr>
<tr>
<td>CMP</td>
<td>chemical mechanic polishing</td>
</tr>
<tr>
<td>CMS</td>
<td>ciliary motion system</td>
</tr>
<tr>
<td>CTE</td>
<td>coefficient of thermal expansion</td>
</tr>
<tr>
<td>CVD</td>
<td>chemical vapor deposition</td>
</tr>
<tr>
<td>DC</td>
<td>direct current</td>
</tr>
<tr>
<td>DDR</td>
<td>double data rate</td>
</tr>
<tr>
<td>DEMUX</td>
<td>demultiplexing</td>
</tr>
<tr>
<td>DMD</td>
<td>digital micromirror device</td>
</tr>
<tr>
<td>DOE</td>
<td>diffractive optical element</td>
</tr>
<tr>
<td>DOF</td>
<td>degrees of freedom</td>
</tr>
<tr>
<td>DRAM</td>
<td>digital random access memory</td>
</tr>
</tbody>
</table>
DRIE deep reactive ion etching
DSC differential scanning calorimetry
DUV deep ultraviolet
DWDM dense wavelength division multiplexing
DXRL deep X-ray lithography
EC electric circuit
EDFA erbium-doped fiber amplifier
ELT extremely large telescope
ETV electrothermal vibromotor
EUV extreme ultraviolet
ExAO extreme adaptive optics
FP or F-P Fabry-Perot
FD finite difference
FHD flame hydrolysis deposition
FIB focused ion beam
FPA focal plane array
FSMOS free-space micro-optical system
FS face shear
FWHM full width half maximum
GLV grating light valve
GRIN gradient index
HEBS high-energy beam sensitive (glass)
HOE holographic optical element
I/O input/output
IBE ion beam etching
IC integrated circuit
ICP inductive coupled plasma (etching)
IR infrared
LC liquid crystal
LIGA lithography, electroplating, and molding
LPCVD low-pressure chemical vapor deposition
LVCMOS low-voltage CMOS
LVDS low-voltage differential signal
MARS modulated antireflecting surface
MC magnetic circuit
MCM multichip module
MDOF master degrees of freedom
MEMS micro-electro-mechanical-systems
MHz megahertz
MMIC monolithic microwave integrated circuit
MOEMS micro-opto-electro-mechanical-systems
MOSMOD micromachined optical shutter modulation
MUMPS multi-user MEMS process service
MUX multiplexing
NA numerical aperture
<table>
<thead>
<tr>
<th>Acronym</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>OXC</td>
<td>optical crossconnect</td>
</tr>
<tr>
<td>PCR</td>
<td>polymerase chain reaction</td>
</tr>
<tr>
<td>PDE</td>
<td>partial differential equation</td>
</tr>
<tr>
<td>PE</td>
<td>planar expansion</td>
</tr>
<tr>
<td>PECVD</td>
<td>plasma-enhanced chemical vapor deposition</td>
</tr>
<tr>
<td>PLC</td>
<td>planar lightwave circuit</td>
</tr>
<tr>
<td>PLE</td>
<td>parallel length expansion</td>
</tr>
<tr>
<td>PMMA</td>
<td>polymethyl methacrylate</td>
</tr>
<tr>
<td>PSF</td>
<td>point spread function</td>
</tr>
<tr>
<td>PVdF</td>
<td>polyvinylidene fluoride</td>
</tr>
<tr>
<td>REM</td>
<td>raster electron microscope</td>
</tr>
<tr>
<td>REPM</td>
<td>rare earth permanent magnet</td>
</tr>
<tr>
<td>RF MEMS</td>
<td>radio-frequency MEMS</td>
</tr>
<tr>
<td>RIBE</td>
<td>reactive ion beam etching</td>
</tr>
<tr>
<td>RIE</td>
<td>reactive ion etching</td>
</tr>
<tr>
<td>rms</td>
<td>root-mean-square</td>
</tr>
<tr>
<td>ROM</td>
<td>reduced order modeling</td>
</tr>
<tr>
<td>RSD</td>
<td>retinal scanning display</td>
</tr>
<tr>
<td>SAM</td>
<td>self-assembled monolayer</td>
</tr>
<tr>
<td>SCREAM</td>
<td>single crystalline reactive etching and metallization</td>
</tr>
<tr>
<td>SDA</td>
<td>scratch drive actuator</td>
</tr>
<tr>
<td>SDR</td>
<td>single data rate</td>
</tr>
<tr>
<td>SEM</td>
<td>scanning electron microscope</td>
</tr>
<tr>
<td>SLM</td>
<td>spatial light modulator</td>
</tr>
<tr>
<td>SMA</td>
<td>shape memory alloy</td>
</tr>
<tr>
<td>SME</td>
<td>shape memory effect</td>
</tr>
<tr>
<td>SOAC</td>
<td>systems on-a-chip</td>
</tr>
<tr>
<td>SOAP</td>
<td>systems on-a-package</td>
</tr>
<tr>
<td>SOI</td>
<td>silicon-on-insulator</td>
</tr>
<tr>
<td>SRAM</td>
<td>static random access memory</td>
</tr>
<tr>
<td>SUMMiT</td>
<td>Sandia’s ultraplanar multilevel MEMS technology</td>
</tr>
<tr>
<td>SVG A</td>
<td>super video graphics adapter</td>
</tr>
<tr>
<td>SWIR</td>
<td>short-wave infrared</td>
</tr>
<tr>
<td>SXGA</td>
<td>super-extended graphics adapter</td>
</tr>
<tr>
<td>TCR</td>
<td>temperature coefficient of resistance</td>
</tr>
<tr>
<td>TE</td>
<td>transverse electric</td>
</tr>
<tr>
<td>TE</td>
<td>thickness expansion</td>
</tr>
<tr>
<td>TEOS</td>
<td>tetra ethyl orthosilicate</td>
</tr>
<tr>
<td>TFAMA</td>
<td>thin-film-actuated mirror array</td>
</tr>
<tr>
<td>TLE</td>
<td>transverse length expansion</td>
</tr>
<tr>
<td>TM</td>
<td>transverse magnetic</td>
</tr>
<tr>
<td>TS</td>
<td>thickness shear</td>
</tr>
<tr>
<td>TTD</td>
<td>true time delay</td>
</tr>
<tr>
<td>UV</td>
<td>ultraviolet</td>
</tr>
<tr>
<td>VCM</td>
<td>variable-capacitance motor</td>
</tr>
<tr>
<td>Acronym</td>
<td>Definition</td>
</tr>
<tr>
<td>---------</td>
<td>--</td>
</tr>
<tr>
<td>VCSEL</td>
<td>vertical cavity surface emitting laser</td>
</tr>
<tr>
<td>VLSI</td>
<td>very large scale integration</td>
</tr>
<tr>
<td>VOA</td>
<td>variable optical attenuator</td>
</tr>
<tr>
<td>WDM</td>
<td>wavelength division multiplexing</td>
</tr>
<tr>
<td>WLP</td>
<td>wafer-level packaging</td>
</tr>
<tr>
<td>XGA</td>
<td>extended graphics adapter</td>
</tr>
</tbody>
</table>
ABOUT THE EDITOR

Dr. Manouchehr E. Motamedi is an Executive of Revoltech Microsystems. He received his Ph.D. in EE from Northwestern University, Evanston, IL, and his MBA from Pepperdine University, Malibu, CA. His research interests focus on MEMS technologies and micro-optics. Dr. Motamedi is the chair of the MOEMS-MEMS Micro & Nanofabrication Symposium, is a chair of several SPIE conferences on MEMS and MOEMS, is the editor of eleven SPIE proceedings and two special issues. He has more than 100 publications including numerous invited papers and plenary presentations. He is a senior member of IEEE, a Fellow of SPIE, and has 12 national and international high-tech patents to his name.
ABOUT THE AUTHORS

Tarik Bourouina received his B.S. degree in Physics from the University Houari Boumedienne, Algeria, in 1987, his M.S. degree in Electronics from the University of Paris-Sud, Orsay, France, in 1988, and his Ph.D. degree in Electrical Engineering from the University of Paris XII, Creteil, France, in 1991. He also received the Habilitation à Diriger les Recherches from the University of Paris-Sud, Orsay, France, in 2000. From 1991 to 1995, he was a lecturer in the ESIEE Engineering School in Noisy-Le-Grand, where he started research on MEMS in the field of silicon-based acoustic microsensors, including the acoustic micro-gyroscope. In 1995, he joined the University of Paris-Sud as an Associate Professor in the Institut d’Electronique Fondamentale (IEF), a joint laboratory with CNRS. From 1998 to 2001, he was at the University of Tokyo as a visiting scientist in the framework of LIMMS. Dr. Bourouina is currently Professor at ESIEE. His current research interests include MOEMS, micro-actuators, and nanostructures.

William D. Cowan received a Ph.D. in Electrical Engineering from the Air Force Institute of Technology (AFIT) in 1998. Through a variety of Air Force, laboratory, and DoD test facility assignments, Dr. Cowan has accumulated over 20 years of experience in defense-related research and development. Throughout his Air Force career, he has authored more than 35 research papers in a number of diverse technical fields including RF components, high temperature superconductors, high power electromagnetic effects testing, long wavelength infrared detection, adaptive optics, and MEMS. In August 2003, he retired from the Air Force and joined Sandia National Laboratories in Albuquerque, New Mexico. Dr. Cowan remains an active adjunct faculty member of the Air Force Institute of Technology, where he taught the MEMS course for three years and continues to advise Masters and Ph.D. students. Dr. Cowan is a Senior Member of IEEE and a member of SPIE, Tau Beta Pi, and Eta Kappa Nu.

Matthias Cumme received his Diploma in Physics from Friedrich Schiller University of Jena in 1998. He has worked in the theoretical investigation of 3D laser-beam shaping by diffractive elements. After finishing his graduate work, he started as a scientist in the department of Microlithography of the Institute of Applied Physics at the Friedrich Schiller University of Jena and worked
in the fundamental processing and R&D of micro-optical elements. Another important branch of Mr. Cumme’s activities is the development of novel design algorithms for the computation of refractive and diffractive beam-shaping elements.

David L. Dickensheets is Associate Professor of Electrical and Computer Engineering at Montana State University in Bozeman, Montana. Dr. Dickensheets received a BSEE degree from the University of Colorado in 1985, a MSEE degree from the University of Washington in 1988, and a Ph.D. in Electrical Engineering from Stanford University in 1997. From 1988 until 1991, he worked as a design engineer for Hewlett-Packard in its Medical Products Division. In 1997, he joined the faculty at Montana State University. His research interests include MOEMS, optical microscopy and spectroscopy of tissues, and the application of microfabrication technologies to develop miniature optical instruments for biomedical and industrial imaging applications and planetary exploration. Dr. Dickensheets has published over 30 technical papers and holds nine patents in the area of optical microsystems. He is a Senior Member of IEEE, and a member of OSA and SPIE. Dr. Dickensheets has served as chairman of SPIE conferences on MOEMS display and imaging systems.

Hiroyuki Fujita received the B.S., M.S., and Ph.D. degrees in Electrical Engineering from the University of Tokyo, Japan, in 1975, 1977, and 1980, respectively. He started as a lecturer at the Institute of Industrial Science at the University of Tokyo during 1980. Dr Fujita was promoted to Associate Professor and then to Professor in 1981 and 1993 respectively. Since the year 2000, he has been a Director of the Center for International Research on MicroMechatronics. Dr. Fujita is currently engaged in the investigation of MEMS/MOEMS systems fabricated by IC-based processes and their applications to communication networks, data storage, and bio/nano technology. He is also interested in autonomous distributed microsystems. Dr. Fujita has contributed to many scientific societies, chaired, and organized several international conferences. He has published more than 100 papers in academic journals and many invited papers and plenary talks. He is a member of IEEE and IEEJ.

Yogesh B. Gianchandani received his B.S., M.S., and Ph.D. degrees in Electrical Engineering in 1984, 1986, and 1994, respectively. He is presently with the EECS Department at the University of Michigan, Ann Arbor. Prior to this, he was with the ECE Department at the University of Wisconsin, Madison. He has also held industry positions with Xerox Corporation, Microchip Technology, and other companies, working in the area of integrated circuit design. His research interests include all aspects of design, fabrication, and packaging of micromachined sensors and actuators and their interface circuits. Prof. Gianchandani serves on the editorial boards of Sensors and Actuators, IOP Journal of Micromechanics and Microengineering, and Journal of Semiconductor
Technology and Science. He also served on the steering and technical program committees for the IEEE International Conference on MEMS, and served as a general co-chair for this meeting in 2002.

Rolf Göring received his Diploma in Physics from Lomonossov State University in Moscow and his Ph.D. in Nuclear Magnetic Resonance Spectroscopy in 1981 from Friedrich-Schiller University in Jena, Germany. He started at the Fraunhofer Institute for Applied Optics and Precision Engineering, in Jena, Germany, where he worked in the field of optical waveguides and fibers, including the development of a range of micro-optical devices. In 1992, he became the head of the micro-optics section in the Fraunhofer Institute focusing mainly on beam-shaping systems for high-power laser diodes. Dr. Goering’s interest was redirected to “moving micro-optics,” leading to novel solutions for MOEMS scanners and switches. In 1999, he joined Piezosystem Jena as a Manager of micro-optics where he developed and commercialized a series of both single-mode and multimode optical fiber switches. In 2001, he joined Pyramid Optics Company as an R&D manager, offering high-quality fiber optic MOEMS switches, shutters, and couplers for the entire VIS/NIR wavelength range. Dr. Goering has contributed to SPIE by chairing and organizing several conferences. He has published numerous papers and is the editor of several SPIE proceedings.

Ridha Hamza graduated from the University of Grenoble in 1998 with a degree in Electrical Engineering. His graduate work was in the area of interface electronics for sensors. He joined MEMSCAP in 1999, where he was in charge of cooperative programs on CAD. He then took over the management of the development of MEMSCAP’s UNIX based MEMS Design Platform MEMS Xplorer and MEMSCAP’s foundry design kits. After two years as a Marketing Manager for CAD tools at MEMSCAP, he is now VP of European and Asian Operations at SoftMEMS. His main interests are in MEMS design methodologies.

Hans Peter Herzig received his diploma in physics from the Swiss Federal Institute of Technology in Zürich, Switzerland in 1978. From 1978 to 1982, he was a scientist with the Optics Development Department of Kern in Aarau, Switzerland, working in lens design and optical testing. In 1983, he became a graduate research assistant with the Applied Optics Group at the Institute of Microtechnology of the University of Neuchâtel, Switzerland, working in the field of holographic optical elements, especially scanning elements. In 1987, he received his Ph.D. in optics. From 1989 until 2001, he was head of the Micro-optics Research Group at the University of Neuchâtel. Since 2002, he has been a full professor and head of the Applied Optics Laboratory. His current research interests include refractive and diffractive micro-optics, nano-scale optics, and MOEMS. Dr. Herzig is senior editor of the Journal of Microlithography, Microfabrication, and Microsystems (JM3), a

Jean-Michel Karam holds a Ph.D. in Microelectronics from the French Institut National Polytechnique de Grenoble, a Masters from Paris VII University, and an Engineering degree from the French ESIEE. After having started and developed the MEMS applied research group at TIMA Laboratory, he founded MEMSCAP in November 1997. In less than three years, he took the company public for half a billion dollars. He grew his organization to be the first independent and listed MEMS group in the world. MEMSCAP today is present in 5 countries with over 200 employees. MEMSCAP acquired Capto (Norway), Cronos from JDS Uniphase (USA), and GalayOr (Israel), and is widely recognized as the MEMS leader. Jean Michel Karam holds more than 25 patents, is author or co-author of more than two hundred publications, is the guest Editor of many scientific magazines and chairman or co-chairman of several conferences.

Ernst-Bernhard Kley received his diploma and Ph.D. in physics from the Friedrich-Schiller University Jena in 1974 and 1987 respectively. After he received his diploma in physics and before he started his doctoral work, he earned three years of industrial experience. Dr. Kley’s general fields of research are micro- and nanolithography, various e-beam writers, and scanning electron microscopes applied to micro-optics, integrated optics, and cryogenic electronics. He made essential contributions to the physics of the proximity effect and the development of variable-dose writing in e-beam lithography, including the combination of e-beam and gray-tone lithography. Currently he is the head of the Microlithography and Micro-optics Group at the Institute of Applied Physics of Friedrich-Schiller-University Jena. This group is well known for long-term experience with the ZRM 12, ZBA 21P, ZBA 23H, and LION LV1 e-beam systems. Dr. Kley is author and co-author of more than 80 scientific papers and was involved in the organization of several conferences. Since the beginning of the 1990s, he was a partner of more than 30 European and national projects and established the cooperation of many international partners.

Ajay P. Malshe received his Ph.D. in 1992 and is a Professor of Mechanical Engineering and an adjunct faculty member of Electrical Engineering at the University of Arkansas, Fayetteville, AR. He is the Director of the SERC for nano- and microsystems and materials and manufacturing research laboratories. Dr. Malshe has multidisciplinary research programs in nanomanufacturing
and MEMS and MOEMS packaging. He has authored over one hundred refereed publications, two book chapters, and holds six patents. He has initiated the development of wafer-level chip scale packaging of MEMS and related micro-systems, nanoparticle composite coatings, femtosecond lasers for chemically clean nanomachining, and nanomechanical machining system-on-a-chip. He has graduated over twenty students and trained numerous post-doctoral fellows. He has received thirteen awards for research, education, and service achievements (1996-2003) and is listed in Lexington’s Who’s Who. He has an extensive record of global collaborations with academic institutions and companies, and has co-founded two companies in the high-tech sector in the state of Arkansas.

Seethambal S. Mani received her Ph.D. from the Materials Engineering Department of Rensselear Polytechnic Institute. Since graduating, she has worked at Westinghouse, Northrop Grumman, and more recently, Sandia National Laboratories. She has been involved in processing devices in both Si and compound semiconductor areas. At Sandia National Laboratories, she started as a process engineer in the chemical vapor deposition area and currently is a technology engineer in the MEMS technology group. She has more than 30 conference proceedings and journal publications. Dr. Mani is a member of SPIE and MRS. She has experience in the area of process integration and has contributed to numerous programs.

Philippe Nachtergaele was born on April 1969 in Charleroi, Belgium. He studied Applied Sciences and obtained an Electro-Mechanical Engineering diploma from the University of Liège, Belgium in 1992. In 1994, he acquired finite elements analysis experience at SAMTECH S.A., Liège. In 1996, he joined the Laboratoire des Techniques Aéronautiques et Spatiales (L.T.A.S.). During 1996 to 1999, he took part in a three year R&D project in aeroelasticity. In 1999, he joined the CAD Development Group of MEMSCAP to focus on MEMS design and is now responsible for the modeling activity inside the Business Unit.

John Patrick O’Connor received his BSAE from the University of Texas at Austin in 1986 and his MSME and Ph.D. degrees from the University of Texas at Arlington in 1991 and 1994, respectively. Dr. O’Connor worked for five years at General Dynamics, Aircraft Division integrating propulsion systems into fighter aircraft. In 1991, he joined Texas Instruments, where he designed thermal management systems for missile and aircraft avionics systems. In 1999, he joined the DLP products division of Texas Instruments where he is currently serving as the DMD Package Development Manager. Dr. O’Connor is an active member of ASME and IMAPS, has authored or co-authored over twenty papers on phase
change heat transfer and MEMS packaging, and is the co-holder of several patents regarding heat transfer or MEMS related packaging issues.

Scot S. Olivier currently leads the Adaptive Optics Group in the Physics and Advanced Technologies Directorate at Lawrence Livermore National Laboratory (LLNL). He joined LLNL in 1991 as a postdoctoral researcher, after receiving his Ph.D. in Physics from the University of California, Santa Cruz and his B.S. from Princeton University in Electrical Engineering, Computer Science, and Engineering Physics. In 1994, he assumed a staff position as an optical physicist in the LLNL Laser Programs Directorate working as the project scientist on the Lick Observatory laser guide star adaptive optics system, which was the first system to successfully utilize a sodium-layer laser beacon. He subsequently served as the LLNL project manager for the Keck Observatory adaptive optics wavefront control and laser guide star systems. His current activities span a broad range of applications, including astronomy, human vision science, high power laser beam control, optical communications, surveillance, and remote sensing. He leads several projects in the development and application of advanced adaptive optics based on MOEMS technology. He also serves as an Associate Director of the NSF Science and Technology Center for Adaptive Optics. Dr. Olivier is a member of SPIE, OSA, and AAS, and has published over 40 papers on adaptive optics.

Long Que received his undergraduate and graduate education in physics and communication in Peking University, Beijing, China. He received his Ph.D. in electrical engineering from the University of Wisconsin-Madison in 2000. He has held various positions in industry, research institutes, and academia. Currently he is a visiting research scientist at the Department of Electrical Engineering and Computer Science at the University of Michigan at Ann Arbor. His research interests are in BioMEMS, MOEMS, nano-MEMS and nanotechnology. He has published about 20 papers in journals and conferences, has been awarded three US patents and has four patents pending. He is a member of IEEE and SPIE.

Gilbert Reyne received an Engineering degree in 1985 from Ecole Normale Superieure de Cachan, Paris, France, and a Doctoral degree in Power Electrical Engineering from INPG National Polytechnic Institute of Grenoble in 1987. Since 1988, he has worked at the French National Centre of Scientific Research (CNRS) as a researcher in Laboratoire d’Electrotechnique de Grenoble (LEG), part of INPG. His research fields include electromagnetic vibrations, magnetostriction, magneto-mechanical FEM coupling, and electromagnetic microsystems. From 1999 to 2001, he was an Invited Senior Researcher at the University of Tokyo assigned to Franco-CNRS/Japanese research Centre, where he developed magnetic micro-actuators and systems (MAGMAS).
for optical applications such as scanners and cross connects. Dr. Reyne is a Professor (Director of Research) on MAGMAS for the CNRS. His current research activities on MAGMAS are strongly coupled with LETI and MINATEC and are focused on magnetic micromotors, bistable micro-switches, deformable mirrors, and magnetic actuation for optical, bio, electrical, or fluidic applications.

Johannes Schwider was born in Gleiwitz, Silesia in 1938. He received his Diploma in physics from TU (Technical University) Dresden in 1961 and his *Dr. rer. nat.* (Ph.D. equivalent in the US) from Humboldt University, Berlin in 1966. In 1978, he received a Doctoral degree in Science and Technology from TH Ilmenau, which was supplemented by the Habilitation at the University Erlangen-Nürnberg in 1987. During 1962 to 1987, Dr. Schwider was with the Academy of Sciences in Berlin, Central Institute for Optics and Spectroscopy. From 1988 to 1990, he was with Heinrich Hertz Institute, GmbH in Berlin and since 1990, has been with the Lehrstuhl für Optik University Erlangen-Nürnberg. Dr. Schwider’s expertise is in physical optics, wave optics, diffraction, and interferometry. He has more than 30 years of experience in interferometry, including 10 years of experience in micro-optics and micro-optical elements—both diffractive as well as refractive—and for 10 years has engaged in optical interconnects for computers and LANs. Dr. Schwider received two major awards for his work on interferometry. The first award was the Abbe-Prize of the Carl Zeiss Foundation in Jena in 1979. His second award was a national prize second class of the GDR in 1986. Dr. Schwider is a member of the German Society for Applied Optics (DgAO) and the Optical Society of America (OSA).

Olga Blum Spahn received her B.S. from the University of Illinois, Champaign-Urbana in 1987, and her M.S. and Ph.D. from the University of California, Berkeley in 1990 and 1992, all in Electrical Engineering. In 1993, she joined Sandia National Laboratories in Albuquerque, NM. Her research interests include micro-optical component fabrication, oxidation of compound semiconductors, 1.3-1.55 μm VCSELs, integration of VCSELs with microsystems, and compound semiconductor MEMS and MOEMS applications. Dr. Blum has over one hundred publications and conference presentations, including several invited talks and book chapters.

Hakan Urey is an Assistant Professor in Electrical Engineering at Koç University in Istanbul, Turkey. Dr. Urey received his B.S. from Middle East Technical University, Ankara in 1992, and his M.S. and Ph.D. from Georgia Institute of Technology in 1996 and in 1997, all in Electrical Engineering. After completing his Ph.D., he joined Microvision Inc. in Seattle, Washington.
as a Research Engineer and was a member of the research team developing the Retinal Scanning Display technology. He was the Principal System Engineer when he left Microvision to join the faculty of Engineering at Koç University. His research interests are in the area of information optics and microsystems, including micro-optics, optical system design, micro-electro-mechanical systems (MEMS), micro-opto-electro-mechanical systems (MOEMS), and display and imaging systems. He is a member of SPIE, IEEE, and OSA.

Lars-Christian Wittig received his diploma in Physics in 1999 from the Friedrich Schiller University of Jena. During his graduate work, he investigated a lithographic pre-form technology for the fabrication of continuous surface profiles. Since that time, he has worked in the microstructure technology and micro-optics group of Dr. Ernst-Bernhard Kley at the University of Jena. His main field of his interest is micro-optics with focus on continuous surface profiles, especially refractive beam shaping elements. His work focuses on the design of micro-optical elements and the technologies for its fabrication with analogue lithography like grey-tone lithography and variable-dose writing. Mr. Wittig is the author and co-author of many scientific papers in this area of technology. He is a member of the Deutsche Physikalische Gesellschaft, the German society for physics.
INDEX

μ solution, 376

2D MEMS switch, 358
2D micromirror array, 372
2D mode, 345
2D scanners, 579
2D scanning, 328, 573
3D actuation, 128
3D ICs, 2
3D MOEMS
3D refractive index, 214
3D scanner, 579
3D SMA clipping structure, 158

III V compound semiconductors, 63

aberration compensation, 428
aberration compensator, 427
aberration measurements, 253
acceleration sensor, 5
accelerometer, 8, 195
acid waste neutralization (AWN), 36
actuated mirror array (AMA), 408
actuation, 489
actuation cycles, 132
actuator, 4, 383, 477, 478, 481, 487, 488, 490, 491, 496, 500, 501
adaptive optics, 21, 215
 in aberration correction, 455 456
 in fusion applications, 455 456
addressable points, 273
adjustment aberrations, 233
AFM tip, 189
afocal system, 327

agile beam steering, 271, 327
alignment, 86
allowable wavelength tolerance, 572
alumina ceramic, 535
analog beam steering, 360
analog lithography, 96
analog scan, 357
anamorphic lenses, 214
anamorphic system, 265
anamorphic view, 246
angular states, 356
anisotropic etching, 336
anisotropic materials, 380
anisotropic wet etching, 33, 385
antiferromagnetism, 175
antireflection coatings, 211
aperture angle, 231
applied external field, 186
arbitrary Lagrangian Eulerian (ALE) formulation, 483
arc beam electrothermal actuator, 144
array fill factor, 213
array generators, 567
array based imaging, 432
articulated mirror, 323
artificial index, 78
aspheric cylinder surface, 249
aspheric cylindrical lenses, 243
aspherical shapes, 217
assembly, 526
astigmatic beams, 223
astronomical adaptive optics (AO) system, 453, 454
asymmetric, 136
austenite temperature, 157
austenitic phases, 151
autocollimation positions, 251
automation, 323
axial displacements, 237
axial resolution, 416
back reflection, 287, 288
barcode reading, 21, 323
barcode reading operation, 337
batch processing, 4
beam deflection tolerance, 574
beam pointing accuracy, 294
beam propagation, 499
beam propagation method (BPM), 494
beam scanning for imaging, 413
beam shaping, 211, 242
beam steering, 211
beam buckling equation, 554
beam splitting, 193
beam splitting illumination, 193
beam steering mirror, 551, 552
beam steering switch, 360
beamsplitters, 21
BEM, 481, 484, 487, 490, 495, 496, 497, 503
bending moment, 168
bent beam actuator, 139, 569
bent beam electrothermal actuators, 142
bent beam rotary actuator, 146
biaxial MEMS scanner, 391
BiCMOS process, 8
bidirectional scanning, 368, 374
bimorph, 147, 166, 481, 488, 569
bimorph actuator, 148, 341
binary diffractive EPE, 390
binary optic microlens, 212, 326
binary optics, 9, 20, 76, 77, 82
binary optics structures, 82
biomechanical, 18
biomimetic packaging, 527
birefringence, 215
bistable DMD concept, 404
bistable mirror, 344
blazed grating, 77, 218
blur circle, 275
body force, 167
bolometer pixel, 581
Bosch etching, 37, 39
boundary element method (BEM) simulations, 479
bow measurement, 554
bowtie structure, 556
bowtie strain gauges, 557
boron phosphorus silicate glass (BPSG), 93
buckled beam and resonator test structure, 555
bulk micromachining, 2, 28, 32, 326, 546
bulk optics technologies, 353
buried oxide layer, 344
calibration curve, 98
California Extremely Large Telescope project, 459
cantilever, 565
tip deflection, 565
cantilever beam, 142, 578
cantilever type actuator, 181
capacitive distance sensors, 361
capped response time, 153
cascaded bent beam electrothermal actuator, 142
cat’s eye position, 233, 240, 251
channel equalizers, 302
Chatoyant, 500
chemical etching, 2
chemical mechanical polishing (CMP), 50
chemical sensor, 190
chemical vapor deposition (CVD), 29
chromatic aberration, 262
ciliary motion system (CMS), 149
circular moiré fringes, 245
clamping voltage, 132
cleaving, 520
clinical adaptive optics system for vision science, 460
closed loop control, 361
CMOS, 401
CMOS cameras, 226
CMOS compatible process, 373
CMOS MEMS, 6
CMOS process, 6
CMOS SRAM memory, 356
CMOS compatible, 16, 353
CMOS compatible MEMS, 57, 60
CMOS compatible MOEMS, 57, 60
CMOS MEMS integration, 59
CMP, 7
CO₂ drying, 521
CO₂ laser, 523
coefficient of resistivity of the material, 140
coefficient of thermal expansion (CTE), 147
coherence envelope, 230
coherence microscopes, 424
Coherent Communications, Imaging, and Targeting project, 461
cohherent imaging, 414
collimating beams, 290, 358
collimation optics, 245
collimator arrays, 291, 294
color GLV systems, 399
color separation, 211
comb drive actuator, 307, 337
commercial applications, 12
competitive environment, 19
composite beam, 342
compound semiconductors, 566
compound semiconductor based MEMS, 60, 66
compound semiconductor based MOEMS, 60, 66
compression molding, 31, 32
compressive stresses, 161
computer aided design (CAD), 477, 478, 481, 482, 487, 492, 496, 498, 505, 507, 509
counter photolithography, 29
counter printing, 82
continuous mirrors, 582
cylindrical microlenses, 243
deposition, 29
differential pressure, 196
differential scanning calorimetry (DSC), 152
differential thermal expansion, 342
diffraction, 395
diffraction analysis, 9
diffraction efficiency, 212
diffraction grating, 187, 328, 395
diffraction order, 188, 189, 273
diffraction spot, 276
diffraction limited, 236
diffraction limited performance, 262
diffusive and refractive microlenses, 211
diffusive element for multiple wavelengths, 567
diffusive gratings, 218, 571
diffusive MEMS (DMEMS), 301, 302
Digital Light Processing (DLP), 356, 400, 528
digital matrix switches, 308, 312
digital MEMS, 306
Digital Micromirror Device (DMD), 137, 355, 372, 400, 405, 489, 527, 529
aperture, 533
die, 533
digital light switching principle, 404
fabrication, 408
hermetic package assembly, 539
operational modes, 581
package, 530
package design, 531
pixel, 401, 402
pixel architecture, 403
pixel fabrication, 407
pixel scaling, 581
switching speed, 581
system, 547
digital projector, 357
digital scanning, 324
digital video, 15
direct bonding, 522
dispersion effects, 230
display, 323, 371
display application, 355
DLP projector, 401
DMD based confocal microscope, 430
DOE, 244
double gimbal structure, 331
double pass geometry, 251
driving voltages, 361
dry bulk micromachining, 35, 39
dry etching, 35, 39
dual axis acceleration, 8
ductile phases, 150
dynamic gain, 302
dynamic mirror deformation, 381, 580
dynamic motion, 167
dynamic range, 5
effective wavelength, 249
e beam writing, 83, 97
easy axis, 182
easy magnetization axis, 186
EDFA optical amplifiers, 302
edge diffraction, 195
electrical circuit, 173
electro optic pn junction, 273
electromagnetics, 325
actuation, 346
interference, 187
linear actuators, 177
electronics interconnections, 274
electroplating, 30
electrostatic force, 125
actuation, 330, 401
actuators, 122
clamping technique, 183
comb drive, 129, 568
electrostatic scanners, 333
electrothermal, 325
microactuators, 139
vibromotor (ETV), 145
entrance pupil, 571
environmental and survival testing, 351
environmental test bed, 351
etching simulations, 480
excitation beam, 191
exit pupil, 252
exit pupil expanders (EPE), 389
experimental uncertainty, 276
extreme adaptive optics (ExAO), 459
F number, 9
fabrication and packaging, 385
fabrication technique, 20, 213
Fabry Perot (FP) cavity, 190
Fabry Perot filter, 14, 64
far field, 485
far field contributions, 485
fast Fourier transformation (FFT), 259, 262, 493
fatigue of SMA thin films, 152
favorable resonance mode, 330
Fellgett advantage, 229
FEM, 481, 483, 486, 490, 495, 496, 497, 502, 503, 505, 506, 508
FEM simulations, 345
ferrimagnetism, 175
ferromagnetism, 175
FIB, 30, 31, 566
fiber array, 291, 293
fiber collimators, 291
fiber geometry, 285
fiber index profiles, 285
fiber optic switches, 303, 574
analog micromirror operation in, 575
binary micromirror operation in, 575
fiber optic system, 287
fiber types, 285
fiber based solution, 253
field of view, 236
field stop, 234
final scanning display, 389
fill factor, 9, 109
fill factor enhancement of detectors, 269
finesse, 191
finite element modeling (FEM), 478
Index

flip chip mating, 5
flip chip mount, 6
fluorescence, 191
fluorescence detection, 187
focal length homogeneity, 294
focal plane systems, 432
focus sensor, 223
focused ion beam, 30
four phase level, 219
Fourier series, 188
FP cavity, 191
FPA system, 276
Fraunhofer technique, 493
free space optics, 357
freeze drying, 521
freeze sublimation, 566
Fresnel lens, 245, 254
Fresnel Kirchoff formulation, 493
friction forces, 133
fringe density, 228
fringe localization, 231
fringe position, 228
fringing effects, 127
fringing fields, 215
front focal plane, 236
fundamental mode, 354
fundamental resonance, 352

GaAs, mechanical properties, 61
Galilean telescope, 573
galvanometric systems, 323
gas gauge structure, 556, 557
Gaussian beam, 377, 577
getter strips, 532
gimbal structure, 360
gimbal mounted biaxial scanner, 380
glass melting technology, 92
global curvature, 547
global planarity, 546
GLV, 372, 393, 394, 396, 397
GLV array, 398
GLV parameters, 580
GLV pixel, 397
GLV pixel microbridges, 396
gradient of the wavefront, 266
grating, 324
grating light valve displays, 372, 393
graytone lithography, 336
graytone masks, 104
grazing incidence, 243
grazing incidence principle, 247
GRIN collimator lenses, 358
GRIN lens, 297
GRIN lens array, 298
GRIN microlens, 296
GRIN microlens arrays, 297
Guckel ring test structure, 556, 587
halftone masks, 102
hard magnet, 176
HDTV, 372
head mounted displays, 211
hearing aids, 1
heat dissipation, 342
heat transfer, 139, 141
helium leak, 539
helmet mounted display (HMD), 372, 391
HEPS photomasks, 11
Hermetic DMD package, 532
Hermetic DMD package assembly, 537
hexagonal geometries made in silicon (HEXSIL), 39, 41, 566
high aspect ratio (17:1) structures, 130
high aspect ratio fabrication, 358
high energy beam sensitive (HEBS) glass, 105
high strength phases, 151
high surface energy, 214
high tech growth, 20
HMD system, 392
holographic optical elements (HOE), 76
holography, 76
Hooke’s law, 553
Horace Babcock, 453
hot embossing, 110
hot embossing process, 31, 32
HWP, 238
hybridization, 274
hysteresis width, 153

ICP system, 38
illuminating wave, 256
image degradation, 336
image projection, 355
imaging ladar, 424
imaging optics, 235
imaging systems, 412
impact force, 133
in situ stress monitoring, 559
in vivo confocal microscopy, 422
in plane, 128, 165
in plane actuation, 124
in process monitoring, 559
inchworm, 144
incoherent imaging, 415
indium columns, 6
inductively coupled plasma (ICP), 37
influence function, 583
infrared bolometry, 65
infrared focal plane arrays (FPAs), 273
injection molding, 110, 214
ink jet lens printing, 96
InP, mechanical properties, 61
input amplifiers, 352
insertion loss, 287, 573
integrated circuit, 1, 479, 509
integrated MEMS optical display system (IMODS), 411
integration of microcoils, 347
interference pattern, 236
interferometers, 223
interferometric modulator (IMod), 410
operation, 412
intermediate image, 232
intermittence effect, 106
internal stresses, 578
inverse transform, 262
IR imaging, 21
isotropic chemical etching, 37
isotropic materials, 380
isotropic wet etching, 33

José heat, 140
junction transistor, 1

key parameters, 287
kinoforms, 76
Kley, Ernst Bernhard, 75
KOH anisotropic etching, 358
KOH etching, 33, 34
KOH wet etching, 565
Kovar, 536–538

lab on a chip, 525
ladar, 424
large displacements, 129
large bandwidth, 13
laser ablation, 340
laser beacon concept, 453, 454
laser diodes, 389
laser imaging, 323
Laser Interferometer Gravitational wave Observatory (LIGO), 463
laser radar, 270
laser assisted chemical vapor deposition (LCVD), 30
laser beam writing, 99
latching mechanism, 178
lateral correlation length, 572
lateral linear actuator, 328
lateral movement, 126
lateral resolution, 416
LED, 389, 392
lens speed, 571
life cycle testing, 351
lifespan, 351
lifespan test, 351
LIGA, 28, 42, 43, 163, 179, 180
LIGA process, 358
LIGA technique, 14, 214
LIGA technology, 178
light deflection, 20
light deflectors, 356
light modulator, 528
light shield, 533, 534
linear approximation, 248
Linnik interference microscope, 230
liquid crystal, 214
local planarity, 546
long term instability, 361
loop actuator, 158
Lorentz force, 177
low index materials, 10
low pressure chemical vapor deposition (LPCVD), 29, 30, 53, 566

Mach Zehnder geometry, 253
Mach Zehnder, 251
magnet volume, 186
magnetic actuation, 172, 183
magnetic actuators, 124
magnetic circuit, 173, 174
magnetic circuit methods, 173
magnetic circuit theory, 179
magnetic core, 175
magnetic domain, 175, 176
magnetic energy, 175
magnetic field, 174, 175, 182
magnetic flux, 174
magnetic induction, 172, 175
magnetic levitation, 176
magnetic media, 173
magnetic microactuators, 177
magnetic moment, 184
magnetic scanner, 579
magnetic susceptibility, 175
magnetic torque, 182
magnetic torsion actuation mechanisms, 570
magnetic torsion actuators, 181
magnetization, 175, 183, 186
magnetization curve, 176
magnetoresistivity, 175
magnetostrictive actuators, 177
magnetostriction, 175, 177
magnetostrictive, 325
magnetostrictive films, 180
magnetostrictive resonators, 347
magnetostrictive scanners, 347
manufacturing process limitations, 531, 538
MARS attenuator, 300, 301, 574
MARS micro optical manipulator, 574
MARS structure, 302
martensitic phases, 150
mask opening, 565
maskless lithography, 568
mass transport, 214
mass transport technique, 214
material properties, 22, 519
mathematical modeling, 19
matrix switch, 308
maximum acceleration, 351
maximum number of resolvable spots, 578
maximum scan angle, 573
MCM, 525
MCNC, 547
mean light direction, 231
mechanical damping, 580
mechanical deformation, 159
mechanical resonance, 273, 345
mechanical restoring force, 126
mechanical restoring torque, 184
mechanical stoppers, 356
mechanical tolerances, 247
medical technologies, 20
MEM VCSEL, 316, 317
membrane
deformable micromirrors, 462 464
deformable micromirrors, metal, 469 470
deformable micromirrors, packaging, 470 472
deformable micromirrors, polysilicon, 464 467
deformable micromirrors, single crystal silicon, 467 469
membrane mirrors, 582
membrane type magnetic actuator, 181
MEMS optical switch, 359
MEMS scanner, 371, 387
MEMS based matrix optical switch, 183
merit function, 259
Michel Karam, Jean, 477
microlens pitch, 293
microlens surface profile, 294
micro locomotion system, 170
micromirrors metal deformable, 465 466, 469
micro optical components, 192
micro optical switches, 568
micro optical system, 122
micro optical testing, 211
micro optics, 8
micro opto electro mechanical accelerometers, 194
micro total analysis system, 122
micro total analysis systems (μTAS), 192
micro wings, 185
microactuators, 121
microbolometer, 432
microbolometer arrays, 432
microbolometer pixel, 434
microbridges, 393
microcracks, 152
microcylinder lenses, 244
microfabrication, 27
microfluidic devices, 586
microheater, 150
microlens, 9
microlens arrays, 295, 297
microlens integration, 274
microlens speed, 9
microlens structure, 571
micromachined confocal optical scanning microscope (μCOSM), 418
micromachined Fabry Perot (F P) cavities, 571
micromachined optical shutter modulation (MOSMOD), 195
micromachining, 1
micromirrors, 169, 529
micromotor, 4
micromotor scanners, 328
micron scale, 19
microsensors, 2, 121
microsystems, 18
microtechnologies, 18
microvibromotors, 131
microworm, 164
miniaturization, 4, 353
minispectrometers, 269
Miraü setup, 225
mirror coating, 578
mirror deformation, 382
mirror flatness, 577 578
mirror roughness, 578
mirror size and scan angle trade offs, 382
misalignment, 247
mixed ambient domains, 516
mixed signal, 22, 516
modulation transfer function (MTF), 259, 261, 376
MOEMS, 58, 491, 492
switches with, 574
MOEMS chip, 273
MOEMS devices, 349
MOEMS scanners, 21
MOEMS solutions for VOAs, 299 302
MOEMS switch, 304
molded surface micromachining, 329
monolithic function generator, 355
monolithic integration, 6, 524, 525, 566
monolithic microlenses, 213, 214
monolithic microwave integrated circuits (MMICs), 64
Monte Carlo, 487, 498, 499
Moore’s law, 1
mounting a microlens array, 298
moving coil actuator raster pinch scanner, 384
Müller or Edser Butler fringes, 228
multichip module, 16
multichip modules (MCM), 524
multidimensional scanning, 331
multilayer piezoelectric actuator, 168
multilevel, 82
multilevel structures, 84
multimode fiber switches, 315 316
multimorph, 147
multimorph actuators, 148
MUMPs, 547, 550, 557
MUMPs stress test structure, 558

Nachtergaele, Philippe, 477
nanosystems, 19
nanotechnical products, 19
near field, 485
near field scanning optical microscopy, 426
nematic LC, 215
neural networks, 215
noise equivalent temperature difference (NETD), 436, 582
NOMAD, 372, 391
NSOM, 426
number of resolvable spots, 415
numerical aperture
 highest possible with standard photolithography, 567

object and reference wavefront, 233
object recognition, 332
obstacle detection, 332
off axis illumination, 192, 193
off axis lenses, 213
on axis illumination, 192
on wafer testing, 351
one way devices, 153
operation principles, 349
operational temperature, 351
optical bandwidth, 17
optical coherence tomography (OCT), 424
optical collimator, 216
optical communication, 327
optical crossconnects (OXC), 303, 357
optical efficiency enhancement, 211
optical fiber, 218
 standard core diameters, 573
optical fiber switch, 290
optical flatness, 343
optical losses, 578
optical matrix switches, 357
optical networking, 12
optical path difference (OPD), 225, 572
optical scanner, 211, 323
optical scanning, 15
optical scanning field, 353
optical solvers, 22
optical switches, 17, 289
optical switching, 324
optical testing, 21
optical transfer function (OTF), 259, 261
optical transformer, 216, 217, 571
order of the fringe, 257
ordinary and extraordinary index values, 215
orientational etching, 2
orthogonal axes, 333
out of plane, 128
out of plane actuation, 124
outgassed materials, 524
outgassing, 520, 523
output force, 125
OXC switch, 360

packaging, 9, 22, 477, 478, 495, 501, 502, 504, 515, 528
packaging challenges, 586
packaging DMD devices, 586
packaging standards, 519
parabolic membrane mirror, 581
parabolic refractive index, 215
parallel plate, 127
parallel plate actuators, 338, 584
parallel plate capacitor, 333, 334
parallel plate electrostatic actuator, 583
paramagnetism, 175
parasitic capacitance, 127
parasitic curvatures, 326
parasitic fringes, 230
parasitic light, 234
paraxial focal length, 572
parent shape, 151
Parseval’s theorem, 189

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 27 Dec 2019
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use
partial differential equations (PDE), 484, 486
pattern recognition, 215
patterning, 28
PDF, 486
permalloy, 346
permanent magnet, 172, 178
permanent magnet micromotor, 179
perpendicular movement, 126
phase gratings, 134, 266
phase lag of the microlenses, 252
phase level binary optics, 571
phase transformation
 austenitic, 155
 martensitic, 155
 rhombohedral, 155
phase transformation hysteresis, 569
phase sensitive diffraction grating, 188
phase shifting evaluation, 257
photoelectric detection, 226
photoelectric detector array, 266
photolithography, 28, 82
photonic crystals, 79
photoresist reflow, 217, 327
physical vapor deposition (PVD), 30
piezoelectric, 325
piezoelectric actuation, 169, 272, 570
piezoelectric bimorph, 570
piezoelectric bimorph structures, 161
piezoelectric charge coefficient, 163
piezoelectric coefficients, 160
piezoelectric effect, 159
piezoelectric film microactuators, 124
piezoelectric micromotor, 165
piezoresistive detectors, 348
piezoresistive strain sensors, 361
piston type micromirror, 148
planar mesa, 276
plane mirror interferometer, 231
plasma enhanced chemical vapor deposition (PECVD), 29, 30
plasma etching, 36
PMMA, 42, 45
point spread function (PSF), 259, 376
point and shoot devices, 270
point contact transistor, 1
pointing angle, 344, 573
Poisson’s ratio, 197
polarization directions, 166
polarizer, 235
polymethyl methacrylate (PMMA), 42
polysilicon, 8
polysilicon membranes, 428
polysilicon mirror
 percent of deflected light, 565
portable projector/digital cinema, 372
positioning allowance, 360
potential energy methods, 173
power efficiency, 349
preforms, 107
pressure membrane, 5
pressure sensors, 2, 196
prestrained condition, 155
process compatibility, 323, 353
process equipment, 19
process simulation, 478, 479, 481
projection, 82
projection display, 356
projection lithography, 219
projection photolithography, 29
projection scene, 355
propagation length, 358
proportional transfer, 113
protocol transparency, 17
proximity printing, 82
pseudo 3D plot, 250
pseudo bimorph, 568
pseudo bimorph actuator, 141
pseudo bimorph thermomagnetic
 flexure actuator, 177
pseudo bimorph based rotary motor, 146
PSF measurements, 275
pull in, 490, 500
 effect, 128, 135
 instability, 339
 phenomenon, 335
 voltage, 135
pulse width modulation (PWM), 356
pulse density, 103
pulse width coding, 103
pump wavelengths, 262
pyroelectric sensors, 439
PZT, 162, 165
PZT actuators, 327
Q factor, 375
quality factor, 130, 345
quantum efficiency, 276
quarter wave plates, 235
quasi static operation, 333
R&D stage, 349
radiation loss component, 140
radius measurement, 241
radius of curvature, 232, 233
Raman stress, 560, 561
rare earth permanent magnet (REPM), 44
raster mode scanning, 355
raster pinch correction, 428
ratchet micromotor, 52
ray trace treatment, 212
Rayleigh Sommerfeld formulation, 493
reactive ion etching (RIE), 36, 37, 75, 272, 462
rectilinear microtransmission, 143
rectilinear motion amplifier, 143
reduced order modeling, 502, 504, 505
reflected light instruments, 230
reflection coefficients, 325
reflectivity, 347
reflow technique, 11, 91
refractive beam shaping, 256
refractive microlens, 10, 212
refractive micro optics, 77
release of die, 520
reliability, 531
replication, 9
REPM, 45
REPM materials, 46
residual stress, 22, 150, 168, 343, 553, 558, 562
resist melting technique, 89
resolution of the movement, 131
resolvable spots, 377, 577
resonance modes, 577
resonant and nonresonant modes, 130
resonant filters, 80
resonant frequency, 130, 166, 169, 194, 379
restoring elastic torque, 334
restoring torque, 128
retinal scanning display, 371, 579
retinal scanning display operation, 388
RIE, 37, 39
RIE etching, 38, 300
RIE process, 9, 50
rigidity modulus, 335
ring electrode device, 216
ROM, 506
Ronchi type, 266
rotary actuator, 307
rotary and translational actuators, 575
rotating magnetic wings, 185
router, 14
RSD, 372, 389, 579
RSD parameters, 579
RSD subsystems, 388
RSD systems, 390

scaling factor, 572
scan, 374
scan angle, 577
scan frequency, 577, 578

scan mirror resolution, 580
scan mirror, 372
scanned linear GLV, 398, 399
scanned beam imaging systems, 412
scanned probe imaging, 426
scanner, 374, 384, 386
scanning angle, 323
scanning engine, 15
scanning imaging systems, 412
scanning mode, 354
scanning techniques, 21
scanning window, 356
Schwider, Johannes, 211
scratch drive actuators (SDAs), 131, 310, 331, 358
single crystalline reactive etching and metallization (SCREAM), 38, 40, 566
SDA, 311
seam welding, 538
seesaw structure, 577
segmented array, 588
segmented micromirror arrays, 549
segmented mirror, 582, 587
selective etching, 2
selective oxidation, 214
self alignment system, 138
self annealing, 143
self assembled beam steering mirrors, 551
self assembled free space micro optical bench, 138
self writing processes, 112
SELFOC, 315
sensor module, 6
Shack Hartmann sensor, 223, 263
shadow mask, 213
shadow mask technique, 213
shape memorization method, 158, 159
shape memory alloys (SMA), 569
shape memory effect (SME), 150
shear force, 167
shearing interferometry, 266
Shockley, 1
sidewall inhibition, 36, 37
Si, mechanical properties, 61
signal processors, 21, 121
signal to noise ratio (SNR), 192
silicon cantilever beam, 342
silicon focal planes, 9
silicon modeling, 380
silicon nitride bridges, 341
silicon nitride membrane, 428
silicon nitride microbridge, 581
simple magnetic actuator, 570
Index

simulation programs, 22
sine waveforms, 355
single crystal silicon, 329
single mode fiber
 mode field diameter, 294
single pass geometry, 251
single point resolution, 414
singulated, 540
SMA, 569
SMA microactuators, 124
SMA microgripper, 155
SMA based microactuator, 151
smallest feature size, 275
SNOM, 426
soft magnet, 176
soft magnetic behavior, 348
software tools, 20
SOI, 566
SOI processing, 38, 39
SOI substrate, 343
SOI wafer, 329
SOI fabricated comb drive, 40
sol gel process, 340
space charge accumulation, 361
space bandwidth product, 239
spatial light modulators, 269, 430
spatial position, 324
spatial separation, 246
speckle size, 572
spherical reflecting surface, 231
spherical surfaces, 251
sphericity test, 236
SPICE, 494, 496, 499
spot size, 376
sputtering, 36, 37
square grid pattern, 361
SRAM, 401, 402, 405, 406
stable alignment, 360
static links, 17
stepper motors, 131
stiff suspensions, 325
stiffness K, 380
stiction, 520
Stoney’s formula for substrate curvature, 566, 587
Strehl ratios, 236
stress, 381, 520, 523
stress gradient, 360, 553, 558
stress free, 160
stress optimized designs, 154
substrate size, 538
subwavelength masks, 104
SUMMiT V, 2, 48, 49, 50, 51, 52, 549
supercritical drying, 566
surface deviation, 237
surface deviation data, 238
surface micromachining, 2, 8, 28, 47, 585
surface relief, 271
surface roughness, 110, 325
SVGA, 372, 375, 386
SWIR, 273
switch array, 14
switch insertion loss, 14
switch matrices with 3D MOEMS, 312, 315
switches with 2D MOEMS, 305, 308
SXGA, 372
symmetric comb drives, 136
symmetric pseudo bimorph, 149
synchronous motor, 134
synchrotron sources in the U.S., 42
systems on a chip (SOAC), 516
systems on a package (SOAP), 516
tapered electrodes, 336
temperature coefficient of expansion, 578
tensile stresses, 161
tensile stresses in a membrane, 583
tensile stresses of thin films, 556
TEOS, 566
TEOS LPCVD, 53
Tessar lens, 236
testing, 520, 524
Texas Instruments micromirror, 491
thermal actuator, 122
thermal cameras, 21
thermal dissipation, 531
thermal effect, 106
thermal expansion mismatch, 343
thermal imaging focal plane array, 432
thermal microactuator, 342
thermal torque, 184
thermocouple, 440
thermoelectric sensor, 440
thermomagnetic actuators, 177
thermomechanical sensors, 442
thermopile, 440
thermopile sensor, 440
thermoplastic materials, 214
thickness monitoring methods, 276
thin film microlens, 9
thin film micromirror array (TMA), 409
three dimensional (3D) actuation, 124
tilt angle, 334
tilting mirrors, 357
time multiplexed color, 356
tip deflection, 587
tip tilt piston segmented mirrors, 582
TMA pixel structure, 410
Index

614

torque, 381
torsion, 379
torsion plate, 128
torsion scanner mechanical properties, 580
torsion beam DMD, 406
torsional microactuator, 182
torsional motion, 135
torsional plates, 568
torsional scanner, 379, 384
torsional spring, 325
torsional spring constant, 334
torsional vibration, 340
translational displacement, 324
tunneling current, 4
tunneling tip sensors, 4
TWG interferometer, 571
two way SMA devices, 153
Twyman interferograms, 239
Twyman Green geometry, 252
Twyman Green interferometer, 231, 263, 572
U shape actuator, 305
U shaped cantilever actuator, 304
U shaped electrothermal actuator, 144
unidirectional scanning, 374
uniform stress distribution, 154
UV reaction molding, 111
UV reaction molding lithography, 112
UV polymerized matrix, 215
V groove, 14
V groove arrays, 292
V groove fabrication, 292
VanCittert Zernike theorem, 571
Vapor deposition, 213
variable diffraction grating, 301
variable dose writing, 97
variable focal lens, 428
variable optical attenuator (VOA), 13, 289, 299, 300, 357, 492
variable capacitance motor (VCM), 133
variable magnetic reluctance motor, 180
vector theory, 219
vertical cavity surface emitting laser (VCSEL), 64, 492
vertical electrostatic clamping forces, 133
very large scale integration (VLSI), 477
vidicon photocathode, 269
virtual retinal display (VRD), 371
virtual wedge, 231
VLSI, 498, 507, 508
VOA, 299
voxels, 357
wafer cleaving, 522
wafer curvature, 553
wafer level encapsulation, 522
wafer level encapsulation of DMD devices, 586
wafer level packaging, 586
wafer steppers, 82
wave aberrations, 252, 269
wave optics calculations, 218
wavefront curvature, 223
wavefront sensors, 266
waveguide switch, 65, 289
wavelength division multiplexing (WDM), 13
wavelength tunablity, 15
wedge interferometer, 231
wet bulk micromachining, 32, 35
wet chemical etching, 462
wet etch systems, 63
wet etching, 214
wetting angle, 89
white light interferometry, 225
window design, 537
window size, 538
wire bond process, 536
wobble motor, 134
wobble type motor, 328
XGA, 372
XYZ optical stage, 138
Young’s modulus, 194
Zernike polynomial, 239, 261