MOEMS
Micro-Opto-Electro-Mechanical Systems

Manouchehr E. Motamed
Editor

SPIE PRESS
Bellingham, Washington USA
This book is dedicated to my wife, Fariba.
Thank you for your encouragement and loving support.
Without you, this achievement would not have been possible.
The book is also dedicated to my four children:
Sheedeh, Shoaleh, Michael, and Cherissa.
CONTENTS

Foreword
S. D. Senturia

Preface
M. E. Motamedi

Acknowledgments

1 Introduction
M. E. Motamedi

1.1 Integrated circuits and the evolution of micromachining
1.2 MEMS review
1.3 New developments in micro-optics
1.4 Micro-optics in MEMS: MOEMS overview
 1.4.1 New developments in optical switches
 1.4.2 Tunable filters and WDMs
 1.4.3 Digital mirror devices
 1.4.4 MOEMS scanners
 1.4.5 MOEMS technology applied to telecom
1.5 Microsystems: Terms and visions
 1.5.1 MEMS and MOEMS activities worldwide
 1.5.2 MEMS and MOEMS science worldwide
 1.5.3 MEMS and MOEMS markets worldwide
1.6 Scope of this book

2 Microfabrication
O. B. Spahn, S. S. Mani

2.1 Introduction
2.2 Bulk micromachining
 2.2.1 Wet bulk micromachining
 2.2.2 Dry bulk micromachining
2.3 Deep x-ray lithography (DXRL)
2.4 Surface micromachining
2.5 CMOS-compatible MEMS and MOEMS
2.6 Compound-semiconductor-based MEMS and MOEMS
2.7 Optics-specific issues for MOEMS
3 Micro-optics
H. P. Herzig, E.-B. Kley, M. Cumme, L. C. Wittig

3.1 Introduction

3.2 History

3.3 Deflection of light by micro- and nanostructures
 3.3.1 Refractive and diffractive micro-optics
 3.3.2 Artificial index material
 3.3.3 Photonic crystals
 3.3.4 Resonant filters
 3.3.5 Demands on profile shapes

3.4 Binary and multilevel optics
 3.4.1 Motivation
 3.4.2 Fabrication of binary optics structures
 3.4.3 Fabrication of multilevel structures
 3.4.3.1 Concept
 3.4.3.2 Diffraction efficiency

3.5 Technologies for continuous surface profiles
 3.5.1 Lithographic technologies
 3.5.1.1 Technologies based on surface tension
 3.5.1.2 Analog lithography
 3.5.2 Transfer of surface profiles into optical materials
 3.5.2.1 Replication
 3.5.2.2 Proportional transfer

3.6 Conclusion

4 Actuation and Sensing
L. Que, Y. B. Gianchandani

4.1 Introduction
 4.1.1 Microactuator
 4.1.2 MOEMS-related sensors
 4.1.3 Organization of this chapter

4.2 Electrostatic actuators
 4.2.1 Background
 4.2.2 In-plane actuation
 4.2.2.1 Electrostatic electrode actuator
 4.2.2.2 Comb drive
 4.2.2.3 Scratch drive actuator
 4.2.2.4 Linear electrostatic micromotor
 4.2.2.5 Rotary electrostatic micromotors
 4.2.3 Out-of-plane actuation
 4.2.3.1 Parallel-plate drive
 4.2.3.2 Torsional actuation
 4.2.4 Three-dimensional actuation

4.3 Thermal actuators
 4.3.1 Background
<table>
<thead>
<tr>
<th>4.3.2</th>
<th>In-plane actuation</th>
<th>141</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.3.2.1</td>
<td>Pseudo-bimorph actuator</td>
<td>141</td>
</tr>
<tr>
<td>4.3.2.2</td>
<td>Bent-beam electrothermal actuator</td>
<td>142</td>
</tr>
<tr>
<td>4.3.2.3</td>
<td>U-shaped and serpentine-shaped electrothermal actuators</td>
<td>144</td>
</tr>
<tr>
<td>4.3.2.4</td>
<td>Linear microvibromotor</td>
<td>145</td>
</tr>
<tr>
<td>4.3.2.5</td>
<td>Rotary actuator</td>
<td>146</td>
</tr>
<tr>
<td>4.3.3</td>
<td>Out-of-plane actuation</td>
<td>147</td>
</tr>
<tr>
<td>4.3.3.1</td>
<td>Bimorph and multimorph</td>
<td>147</td>
</tr>
<tr>
<td>4.3.3.2</td>
<td>Symmetric pseudo-bimorph</td>
<td>149</td>
</tr>
<tr>
<td>4.3.4</td>
<td>Three-dimensional actuation</td>
<td>149</td>
</tr>
</tbody>
</table>

4.4 Shape memory actuators | 150 |
4.4.1	Background	150
4.4.2	In-plane actuation	154
4.4.2.1	Linear SMA microactuators	154
4.4.2.2	SMA microgripper	155
4.4.3	Out-of-plane actuation	156
4.4.3.1	SMA bimorph	156
4.4.4	Three-dimensional actuation	158

4.5 Piezoelectric actuators | 159 |
4.5.1	Background	159
4.5.2	In-plane actuation	163
4.5.2.1	LIGA piezoelectric actuator	163
4.5.2.2	Linear microworms	164
4.5.2.3	Inchworm	164
4.5.2.4	Rotary micromirror	165
4.5.3	Out-of-plane actuation	166
4.5.3.1	Bimorph	166
4.5.3.2	Multilayer cantilever	168
4.5.3.3	Torsion: 2D scanning mirror	169
4.5.4	Three-dimensional actuation	170

4.6 Magnetic actuators | 171 |
4.6.1	Background	171
4.6.2	In-plane actuation	177
4.6.2.1	Latchable bistable actuator	177
4.6.2.2	Magnetic micromotor	179
4.6.3	Out-of-plane actuation	180
4.6.3.1	Cantilever and membrane actuation	180
4.6.3.2	Torsional actuation	181
4.6.4	Three-dimensional actuation	185

4.7 MOEMS-related sensors | 187 |
4.7.1	Displacement sensors	187
4.7.2	Chemical sensors	190
4.7.3	Fluorescence detection sensors	191
4.7.4	Inertial sensors: accelerometers	194
4.7.5	Pressure sensors	196
5 Micro-Optic Components, Testing, and Applications

M. E. Motamedi, J. Schwider

5.1 Micro-optic components

5.1.1 Micro-optical lenses
5.1.1.1 Vapor deposition
5.1.1.2 Mass transport
5.1.2 Liquid crystal optical components
5.1.3 Beam-shaping optical components
5.1.3.1 Optical collimator
5.1.3.2 Optical transformer

5.2 Micro-optical testing

5.2.1 Optical profile measurement
5.2.1.1 Optical profilometers using focus detection
5.2.1.2 Optical profilometers based on white light interferometry
5.2.2 Surface deviation measurements
5.2.2.1 Spherical microlenses
5.2.2.2 Cylindrical microlenses
5.2.3 Wave aberration measurement
5.2.3.1 Weak phase objects
5.2.3.2 Microlenses as strong phase objects
5.2.3.3 Cylindrical lenses
5.2.3.4 Shearing methods and wavefront sensors

5.3 Micro-optics applications

5.3.1 Beam steering
5.3.2 Microlens and FPA integration
5.3.2.1 Micro-optics integration
5.3.2.2 Device characterization

6 Fiber Optic Systems

R. Göring

6.1 Introduction
6.2 Fundamentals
6.2.1 Optical fiber types
6.2.2 Key parameters of fiber optic components
6.2.3 Direct fiber or waveguide movement
6.2.4 Manipulation in a collimated beam
6.3 Fiber collimators and collimator arrays
6.3.1 Fiber arrays
6.3.2 Microlens array requirements
6.3.3 Fabrication of microlens arrays
6.3.4 Fiber array and microlens array mounting techniques
6.4 Fiber optic components with MOEMS
6.4.1 Variable optical attenuators
6.4.2 Dynamic gain and channel equalizers
6.4.3 Fiber optic switches
6.4.3.1 Switches with direct fiber or waveguide movement 303
6.4.3.2 Switches with 2D MOEMS 305
6.4.3.3 Digital matrix switches 308
6.4.3.4 Switch matrices with 3D MOEMS 312
6.4.3.5 Multimode fiber switches 315
6.4.4 Tunable sources and filters 316
6.5 Summary 319

7 Optical Scanning 323
T. Bourouina, H. Fujita, G. Reyne, M. E. Motamedi

7.1 Introduction 323
7.2 Operation principles and classifications of optical scanners 324
7.3 Scanning systems utilizing mechanical structures 325
7.3.1 Tilting micromirrors 325
7.3.2 Lens scanners 326
7.3.3 Micromotor scanners 328
7.3.4 Mirrors with a leverage mechanism 328
7.3.5 Surface-micromachined mirrors 330
7.4 Multidimensional scanning 331
7.5 Microactuators designed for scanning 333
7.5.1 Electrostatic scanners 333
7.5.1.1 Electrostatic actuators with parallel electrodes 333
7.5.1.2 Electrostatic actuation with tapered electrodes 336
7.5.1.3 Electrostatic comb-drive surface-micromachined scanners 336
7.5.1.4 Electrostatic comb drive for out-of-plane tilting mirrors 337
7.5.2 Piezoelectric scanners 340
7.5.2.1 Scanners using thin-film piezoelectric actuators 340
7.5.2.2 Piezoelectric scanners in hybrid technologies 341
7.5.3 Electrothermal scanners 342
7.5.3.1 Principle of scanning 342
7.5.3.2 Device structural design 342
7.5.3.3 Characterization and testing 344
7.5.4 Magnetic scanners 345
7.5.4.1 Electromagnetic scanners 345
7.5.4.2 Magnetostrictive scanners 347
7.6 Comparative characteristics 349
7.7 Environmental and survival testing 349
7.8 Applications to commercial products 353
7.9 Applications of MEMS movable mirrors 355
7.9.1 Image display systems 355
7.9.1.1 Display systems using a single scanner 355
7.9.1.2 Display systems using arrays of light deflectors 356
7.9.1.3 Three-dimensional display 357
8 Display and Imaging Systems

H. Urey, D. L. Dickensheets

8.1 Introduction

8.2 Display systems

8.2.1 Retinal scanning displays

8.2.1.1 MEMS scanners for display applications

8.2.1.2 System performance

8.2.2 Grating Light Valve displays

8.2.2.1 Pixel structure and operation

8.2.2.2 Pixel performance

8.2.2.3 System performance

8.2.3 Digital micromirror device

8.2.3.1 Pixel structure

8.2.3.2 Pixel operation

8.2.3.3 Intensity modulation and switching time

8.2.3.4 Fabrication

8.2.3.5 System performance

8.2.4 Other MEMS display technologies

8.3 Imaging systems

8.3.1 Scanning imaging systems

8.3.2 Confocal imaging systems

8.3.3 Other MEMS-based scanned-beam systems

8.3.4 Scanned-probe imaging

8.3.5 Aberration correction for scanned imaging systems

8.3.6 MOEM spatial light modulators in scanned imaging systems

8.3.7 Array-based imaging systems (focal plane systems)

8.3.7.1 Thermal imaging focal plane arrays

9 Adaptive Optics

S. S. Olivier

9.1 Introduction

9.1.1 History of adaptive optics

9.1.2 Conventional deformable-mirror technology

9.1.3 Motivations for MEMS deformable mirrors

9.1.4 The center for adaptive optics

9.1.5 The Coherent Communications, Imaging, and Targeting project

9.2 Membrane deformable micromirrors

9.3 Polysilicon deformable micromirrors

9.4 Single crystal silicon deformable micromirrors

9.5 Metal deformable micromirrors
Contents

9.6 Packaging and electronics 470
9.7 Future trends and challenges 472

10 MEMS and MOEMS CAD and Simulation 477
R. Hamza, J. M. Karam, P. Nachtergaele

10.1 Introduction 477
10.2 3D device simulation 479
 10.2.1 Introduction 479
 10.2.2 Process simulation 479
 10.2.3 FEM and BEM simulation 481
 10.2.3.1 Introduction 481
 10.2.3.2 FEM simulation 482
 10.2.3.3 BEM analysis 484
 10.2.3.4 Comparison of FEM and BEM 485
 10.2.3.5 Meshing 486
 10.2.4 Noncontinuum methods 487
10.3 Actuator design and simulation 487
 10.3.1 Introduction 487
 10.3.2 Simulation of thermal actuators 487
 10.3.3 Simulation of electrostatic actuators 489
10.4 Optical solvers 491
 10.4.1 Introduction 491
 10.4.2 Propagation phenomena 492
 10.4.3 Optical theories 492
 10.4.4 Mathematical techniques and approximations 493
 10.4.5 Codes 494
10.5 System-level simulations 494
 10.5.1 Optimization 497
 10.5.2 Statistical analysis 498
 10.5.3 Dedicated MOEMS simulation and cosimulation 499
 10.5.4 System simulation example—pull-in computation 500
 10.5.5 Packaging simulation 501
 10.5.6 Reduced-order modeling 502
 10.5.6.1 Example application: Reduction of a micromirror 504
10.6 Physical tools and verification 505
 10.6.1 Design rule checking, extractors, layout versus schematic, and parasitics 507
10.7 Material, process, and reliability issues 508
10.8 Conclusions 508

11 MEMS and MOEMS Packaging 515
A. P. Malshe, J. P. O’Connor

11.1 Overview 515
11.2 Background and introduction 515
11.2.1 Mixed signals, mixed domains, and mixed scales packaging: Towards the next generation of application-specific integrated systems 515
11.2.2 Micro-electro-mechanical systems 517

11.3 Challenges in MEMS system integration 518
11.3.1 Release and stiction 520
11.3.2 Dicing 521
11.3.3 Die handling 522
11.3.4 Wafer-level encapsulation 522
11.3.5 Stress 523
11.3.6 Outgassing 523
11.3.7 Testing 524
11.3.8 State of the art in MEMS and MOEMS packaging 524
11.3.9 Summary and future directions 526

11.4 Packaging considerations and guidelines related to the Digital Micromirror Device™ 527
11.4.1 Introduction and background to MOEMS devices and particularly the DMD™ 527
11.4.2 Parameters influencing DMD™ packaging 530
11.4.3 DMD™ package design 531
11.4.3.1 DMD™ die size 532
11.4.3.2 Package piece parts 534
11.4.3.3 Substrate design 535
11.4.3.4 Window design 537
11.4.3.5 Package size 538
11.4.3.6 Headspace getters 538
11.4.4 DMD™ hermetic package assembly 539
11.4.5 Future packaging challenges 539

12 MEMS and MOEMS Materials 545
W. D. Cowan

12.1 Introduction 545
12.2 Effects of materials on MOEMS 545
12.3 Measuring materials properties 553
12.3.1 Wafer curvature 553
12.3.2 Microstructures 554
12.3.3 In-process monitoring methods 559
12.4 Residual stress engineering 562
12.5 Conclusions 562

Problems and Exercises 565
Acronyms 589
Index 603
In the “good old days” of the early 1980s, before the name “MEMS” was used to describe the various types of microfabricated devices that have a primary functionality other than electronic, there was a sense among the pioneers that what later came to be called “MEMS” was a single field, with a common core technology, a cadre of investigators, and a sense that anyone in the field could and would work on any of the many applications which this technology could impact.

At the 1995 International Conference of Solid-State Sensors and Actuators (Transducers ’95) held in Stockholm, one of those pioneers, Dr. Kurt Petersen, noted that a major change was taking place. No longer could MEMS be considered “a field.” MEMS had become “an enabling technology” with such widespread applications that individual disciplines were adopting MEMS and setting up new conferences and journals that focused on the needs of each discipline. Historically, MEMS had grown out of the efforts of primarily electrical and micro-electronic engineers (although the MEMS acronym itself was proposed in the mid-1980s by the mechanical engineering robotics group at the University of Utah). As MEMS migrated from being a field to becoming an enabling technology, specialists from the many disciplines that were adopting MEMS changed the nature of the discourse. By bringing the knowledge base of these diverse disciplines into contact with MEMS technology, wholly new sets of applications and opportunities were identified and became the subject of an innovative and highly creative effort. The fact that real products that addressed real markets could be manufactured at competitive prices provided opportunities for bold leaders to invest in, and create, new lines of business based on paradigm-shifting device designs. This was not confined to the large, established companies. Where promising markets could be identified, venture capitalists invested in many start-up companies (with all the associated hyperbole that accompanies such high-risk activities). While the reality has been that some of this venture investment resulted in disappointment (not because of the technology but rather because of the market readiness for some of the newest concepts), some of the venture investment has led to high-profile buyouts and to new publicly traded companies with real product lines based, in some fashion, on MEMS technology.

Optics is one of these disciplines. The adoption of MEMS technology by optical practitioners has been so complete that a new acronym “MOEMS” has been invented and is now widely used. With experienced optics people now thinking about MOEMS, the scope of effort has spread across a diversity of product areas (sensors, optical communication devices, scanners, displays) and brought with it the need to address real product needs such as alignment aids, lens
arrays, and hermetic wafer-scale packages. MEMS remains, however, as the enabling technology, and many of the concepts and fabrication technologies that were originally developed for pressure sensors or accelerometers have turned up in a variety of optical device applications. This is right and proper. Enabling technologies enable.

However, enabling technologies do not define the scope of their ultimate application. Rather, that is done by the practitioners, with thinking that has now gone well beyond the elementary idea of an actuator moving a shutter or mirror. The wave nature of light offers many opportunities to exploit interference and diffraction, and the marriage of MEMS to active optical devices offers the opportunity to build electromechanically tuned lasers.

This volume, commendably assembled by Ed Motamedi, one of the pioneers in the MOEMS field, addresses the full scope of the overlap of electromechanics, microfabrication, and optics. Some of the chapters use the case-study method, drawing on successful practical examples as teaching tools. Others are structured more as survey articles, with almost encyclopedic collection of relevant work. The book is thoroughly referenced and provides the reader with cited pathways for following up on the many examples presented here. A good measure of a book like this is to ask, “If you know everything in this book, do you know something important and useful?” The answer here is clearly, “yes.”

Stephen D. Senturia
Professor of Electrical Engineering, Emeritus
Massachusetts Institute of Technology
September, 2004
The integration of micro-optics and micro-electro-mechanical systems (MEMS) has created a new class of microsystems, termed micro-opto-electro-mechanical systems (MOEMS) that are capable of unprecedented levels of performance and functionality. Born from the relatively new fields of micro-optics and MEMS, MOEMS are proving to be an attractive solution to a range of optical problems requiring high functionality, high performance, and low cost. In this early stage of MOEMS, the majority of devices demonstrated are miniaturized versions of macroscopic systems, leveraging the low-cost manufacturing technologies of integrated circuits. In the near future, it is expected that entirely new classes of microsystems will emerge that do not have a macroscopic counterpart and are fully enabled by MOEMS. It could be argued that the future development of high-density optical switch matrixes is an example of this trend.

The purpose of this book is to introduce this exciting and fast-moving field to graduate students, scientists, and engineers by providing a foundation of both micro-optics and MEMS to enable future research in the field of MOEMS. This book is not intended to be a summary of leading-edge research results, although state-of-the-art devices are used as examples throughout the text and chapter problems. The intent is to cover the topics in sufficient detail as to provide researchers with the foundation to proceed in the design, fabrication, and analysis of state-of-the-art MOEMS.

The book begins with a short history of integrated circuits and the development of micromachining. Then, the reader is given an overview of MEMS and micro-optics and the potential for merging the two fields. Following the introduction, the book is divided into four distinct parts. The first part of this book provides the necessary foundation in MEMS technology covering micromachining (Chapter 2) and micro-optics (Chapter 3). The second part of the book describes microfabricated sensors and actuators (Chapter 4), which hold promise for use in MOEMS, and micro-optical components and testing (Chapter 5), which serve as the building blocks of integrated microsystems. The third part of the book describes several major application areas for MOEMS from the perspective of device design and fabrication as well as systems integration. Since the list of applications for MOEMS is growing on a daily basis, we have focused on four major areas: fiber-optics (Chapter 6), optical scanning (Chapter 7), display and imaging (Chapter 8), and
adaptive optics (Chapter 9). Finally, in the last part of the book we discuss the recent advances in MOEMS CAD and simulation (Chapter 10), in major packaging issues (Chapter 11), and in material properties (Chapter 12).

M. E. Motamedi
January 2005
ACKNOWLEDGMENTS

Over the past decade, I have worked extensively in micro-optics, MEMS, and MOEMS, developing and teaching several short courses in the area. The necessity of publishing a book in this field soon became obvious, and I set out to write a reference book as an introduction to MOEMS, familiarizing readers with the potential of merging optical technology and MEMS. As MOEMS matured and many other branches of optics and MEMS were combined, I found that one person’s knowledge cannot cover the entire field. Instead, I decided to form a team of experts to prepare a book to the highest standards.

Thanks to the worldwide web, my search for authors was a success. Our team has twenty three members: twelve from academia, seven from industry, and four from government and national labs. Had I been alone in this endeavor, I might have never been successful. Together, we formed a powerful and proactive team to create a comprehensive, authoritative guide to the most advanced technology of MOEMS. The book is a practical reference book, interdisciplinary in nature, and is for all undergraduate and graduate students in engineering.

First, I wish to acknowledge all contributors. A short biography of each author is listed at the end of the book. It was a great pleasure to work with this team to dynamically improve the book in response to readers’ feedback.

The book was critically peer reviewed by several individuals. I would like to acknowledge them and express my gratitude for their comments, suggestions, and advice, which wholly improved the contents of this book. Special thanks goes to Dr. Steve Senturia who honored us with a Foreword, and to Dr. Doug Sparks for his comments regarding the commercial and manufacturing aspects of the book.

A large number of people have helped me to keep abreast of the latest technology and some encouraged me in the production of this book, either personally or professionally. I am indebted to these people. Some are my dear colleagues who worked with me at Rockwell during the 1980s for the development of CMOS MEMS monolithic accelerometers, and others were my colleagues during the 1990s for the development of micro-optics, eventually leading me to the field of MOEMS. For the development of CMOS MEMS, these people are Dr. Gus Andrews, Mr. Jack Uppal, Mr. Peter Hagon, and Dr. Eugene Whitcom; for the development of MOEMS, they are Dr. Monte Khoshnevisan, Dr. Bill Gunning, Dr. Bill Southwell, Dr. Haluk Sankur, Dr. Gus Andrews, Dr. Bill Tennant, Dr. Hank Marcy, Dr. Jeff DeNatali, Mr. Sangtae Park, Mr. Jeff Moranski, Mr. Bob Anderson, Mr. Mike Ugalde, Dr. Arthur Chiou, and Dr. Ian MacMichael.
I am also indebted to those outside of Rockwell: Dr. George Laskar from General Dynamics for his help of high-Gs MEMS environmental testing; Prof. Richard Muller and Prof. Richard White from UC Berkeley for their help in the development of microaccelerometers; Dr. Wilfred Veldkamp, Dr. Bob Knowlden, Dr. Margaret Stern, Dr. Garry Swanson, Dr. Michael Farn, and Mr. Bill Delaney of Lincoln Labs for their help in the development of micro-optics; Prof. Jan Smits from Boston University for the development of bimorph actuators; Prof. Chang-Jin Kim and Prof. Ming Wu from UCLA for their help in development of MOEMS devices and packaging; Dr. Larry Hornbeck for his input in DMD description; Dr. Kevin Chau from Analog Devices for his input in AD airbag-package chip description; and Dr. Arno Hoogerwerf and Dr. Francis Cardot from CSEM, Nuechâtel, Switzerland for their assistance in the development of manufacturable MOEMS.

I am especially indebted to a few special people who have played different roles in my success in bringing this book to reality. One is Dr. Tom Krygowski, who first supported me in developing the structure of the book and encouraged me during the past several years to bring the book to life. Tom also assisted me in the development and teaching of several short courses in the area of MEMS and MOEMS. I truly appreciate his guidance and his support. Another special person who should share with me almost all of the materials I have included in this book is Dr. Monte Khoshnevisan who was my driving force during almost a decade when I was in Rockwell. Monte was one of the frontrunners in bringing micro-optics and then MOEMS to commercial life and sincerely supported me through Rockwell and governmental funds to accomplish this mission. It is his encouragement to realize the power of micro-optics and the importance of merging that with MEMS for which I am truly grateful.

I would also like to thank two executives from Revoltech Microsystems in Europe, Dr. H. Shafazand and Mr. A. Aria, both of whom encouraged me to work on development of this book. I appreciate their support and their willingness to take responsibility for the business in my absence.

I am also very grateful to my wife, Fariba Motamedi. Without her steadfast backing, this research would not have been completed. I am especially indebted to her for encouraging me virtually every day to keep me in “resonance” during the past three years of participation in this work.

Finally, I would also like to thank the SPIE Press staff who have done an excellent job in making this book pleasant for readers. Those who closely supported me during this mission were Mr. Timothy Lamkins, Ms. Sharon Streams, Mr. Rick Hermann, and Mr. Eric Pepper. I especially thank Eric for his pursuance and encouragement and his promise to make this book a special one. A special thanks also goes to Tim Lamkins who was nice, friendly, and enjoyable to be with during this journey.

M. E. Motamedi
January 2005
LIST OF CONTRIBUTORS

Bourouina, Tarik ESIEE, France
Cowan, William D. Sandia National Laboratories
Cumme, Matthias Friedrich-Schiller University of Jena
Dickensheets, David L. Montana State University, Bozeman
Fujita, Hiroyuki The University of Tokyo
Gianchandani, Yogesh B. University of Michigan, Ann Arbor
Göring, Rolf Pyramid Optics GmbH
Hamza, Ridha SoftMEMS
Herzig, Hans Peter University of Neuchâtel
Karam, Jean-Michel MEMSCAP
Kley, Ernst-Bernhard Friedrich-Schiller University of Jena
Malshe, Ajay P. University of Arkansas, Fayetteville
Mani, Seethambal S. Sandia National Laboratories
Motamedi, Manouchehr E. Revoltech Microsystems
Nachtergaele, Philippe MEMSCAP
O'Connor, John Patrick Texas Instruments
Olivier, Scot S. Lawrence Livermore National Laboratory
Que, Long University of Michigan at Ann Arbor
Reyne, Gilbert Franco-CNRS/Japanese Research Centre
Schwider, Johannes Lehrstuhl für Optik University Erlangen-Nürnberg
Senturia, Stephen D. Massachusetts Institute of Technology
Spahn, Olga Blum Sandia National Laboratories
Urey, Hakan Koc University, Istanbul, Turkey
Wittig, Lars-Christian Friedrich-Schiller University of Jena