Bibliography

Index

A

additive efficient normalization, 101, 139
axioms
 anonymity, 62, 69, 136, 137
 coalitional monotonicity, 100, 139
 consistency, 68, 137
 continuity, 63, 136
 efficiency, 99, 139
 inessential game, 100, 139
 linearity, 100, 139
 pareto optimality, 69, 137
 scale invariance, 63, 136
 solidarity, 62, 136
 symmetry, 100, 139
 WPO, 62, 136
 zero independence, 69, 137

coders
 JPEG2000, 70
 QF-REWIC, 117
 RECON, 91, 94
 format, 168
 REWIC, 32, 70, 91
 format, 163
 self-control, 72
 self-rewarding, 78
 SPIHT, 32, 70, 91, 94, 153, 195
compound gain (CG), 19, 32, 125, 133, 183
CG curves, 78
computation ratio
 best achievable, 189, 190, 192, 193
computational time, 91
conjunction of features, 16
constraint
 information conservation, 18, 133, 178
 significance conservation, 19, 133, 183
cooperation, 65, 68, 105
cooperative
 action, 65
 decision, 62
 distribution, 64, 137

decision model
 noncooperative, 69, 138
DISSTAF field test, 20
E
embedded coding, 1
error measures
dist_{REWIC}, 46, 49, 135
MSE, 43, 49
evaluation function, 24

F
fair transmission, 126, 141
features
detection, 178
fixation (interest) points, 178

G
games
coalitional, 67–69, 84, 88, 137
family of solutions, 86
cooperative, 113
SOT-restricted, 113, 114, 141
zerotree solution, 114
transferable utility, 67, 84
payoff, 85

I
information content, 183
information gain, 173, 174
axiomatic characterization, 17
measure, 17
interest points, 16
ITU-R recommendation, 37, 70,
72, 94

J
justice, 105

K
Kolmogorov-Smirnov (K-S) test,
28, 50
Kullback-Leibler information func-
tion, 176

L
least squares family, 99, 139

M
maximum entropy, 176
mean quality factors, 70, 72, 91,
94, 117
multisensor scheme, 16

N
Nash’s bargaining problem, 65

P
phase congruency, 15
prioritization, 41
noncooperative, 64, 137

Q
quantizers, 67, 69, 106
formation, 110
just, 111, 140
importance, 111, 140
interest, 86, 138
risk tolerance, 84

R
rate control, 13
rationality, 65, 68, 105
reasonable regret, 111, 140
relative information, 175
risk
attitude, 31, 63, 64, 67, 69,
137
aversion, 63, 64, 137
tolerance, 82
value, 9, 132

S
selective information gain, 180
self-control, 63, 64, 137
self-rewarding, 67, 69, 137
semivalue, 101, 139
SOT, 1, 105, 155
 comparison, 5, 130
 importance, 112
 preference, 6, 130
 selection, 5, 130
spatial selectivity, 16
subband decomposition, 147

T

target distinctness
 psychophysical, 22
 visual, 46, 135
transmission
 progressive, 63, 65, 83, 144
 rational, 63, 64, 88, 137
 unsteady, 65
truncation time, 67, 69, 86, 138

U

utility
 expected increase, 46, 69
 functional form, 12, 132
 functions, 8

V

visual patterns, 16

W

wavelet
 1D transform, 146
 2D transform, 146
 DWT, 148
weight function, 88, 99, 115, 141

Z

zerotrees, 112, 151
Jose A. García was born in Almeria, Spain. He received M.S. and Ph.D. degrees in Mathematics from the University of Granada in 1987 and 1992, respectively. Since 1988 he has been with the Computer Science Department (DECSAI) at Granada University, where he is now an Associate Professor. Dr. García is the author of more than 100 technical papers and two books, including SPIE Press Vol. PM95, *Computational Models for Predicting Visual Target Distinctness*. He has devoted the last 15 years to developing computer vision models for biomedicine, astronomy, cartography, feature extraction, clustering, image representation, image distortion, visual target distinctness, and image compression. He is a member of the International Association for Pattern Recognition (IAPR).

Rosa Rodriguez-Sánchez was born in Granada, Spain. She received M.S. and Ph.D. degrees in Computer Science from the University of Granada in 1996 and 1999, respectively. Currently she is with the Computer Science Department (DECSAI) at Granada University, where she is now an Associate Professor. She is the author of two books, including SPIE Press Vol. PM95, *Computational Models for Predicting Visual Target Distinctness*, and more than 35 scientific journal and conference proceedings papers in the field of computer vision. Her current interests include computer vision, visual perception, and image coding. Dr. Rodriguez-Sánchez is a member of the International Association for Pattern Recognition (IAPR).

Joaquín Fdez-Valdivia was born in Granada, Spain. He received M.S. and Ph.D. degrees in Mathematics from the University of Granada in 1986 and 1991, respectively. Since 1988 he has been with the Computer Science Department (DECSAI) at Granada University, where he is now an Associate Professor. His current interests include computer vision, image representation, feature detection, visual target distinctness, image coding, and biomedical applications. Dr. Fdez-Valdivia is a member of the International Association for Pattern Recognition (IAPR) and the IEEE Computer Society. His research work is summarized in more than 100 papers published in scientific journals and conference proceedings as well as two books in the field of computer vision, including SPIE Press Vol. PM95, *Computational Models for Predicting Visual Target Distinctness*.

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 28 Apr 2019
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use