INDEX

absorbance spectrometry, 65
activation energy, 92
active pixel sensor, 11
ADC, 96, 191
aliasing, 102
amplifier glow, 28
analog to digital converter, 96
arc lamps, 182
arrays, 10
atomic line standards, 162
background reading, 159
back-illuminated CCD, 77, 82
bandwidth, 123
Beer’s law, 158
beta light, 40
binning, 16
blackbodies, 183
buffered direct injection, 24
capacitive transimpedance amplifier (CTIA), 25
cascode amplifier per detector (CAD), 25
CCD, See charge-coupled device
center of gravity, 90
ceramic tiles, 132, 133, 185
charge injection device, 11
charge transfer efficiency, 42
charge-coupled device, 8, 11
charge-coupled photodiode array, 11
charge-to-voltage conversion factor (CVF), 27, 34
charge transfer efficiency (CTE), 42, 99
CIE standard illuminants, 174
clocked antiblooming, 21
color correction, 115
color error, 115
color imaging, 12
color measurement, 61
contamination, 107
continuum sources, 173
conversion gain, 34
correlated double sampling, 21
cosmic ray effects, 103
crosstalk, 50, 98
CTE, See charge transfer efficiency
CVF, See charge-to-voltage conversion factor
dark reading, 159
dark signal, 29
dark signal nonuniformity (DSNU), 30, 91
deuterium discharge lamps, 144, 179
differential nonlinearity, 96
digital photography, 113
direct injection, 24, 116
discharge lamp, 130
dither clocking, 20
double aperture, 150
DSNU, See dark signal nonuniformity
dump gate, 15
diode filter, 143, 184
electrodeless discharge lamps (EDLs), 182
electron-multiplying CCDs, 14
electronic shuttering, 17
emission spectrometry, 66
extended pixel edge response (EPER), 43
eye response, 52
field-enhanced emission, 92
filter leaks, 107
first pixel response (FPR), 43
fixed pattern noise, 31, 91
flat fielding, 110
fluorescence microscopy, 62
fluorescence spectrometers, 163
flushing, 21
flux superposition, 150
FPN, See fixed pattern noise
FPR, See fixed pixel response
frame interline transfer, 8
frame transfer, 8
fringe effects, 82
front-illuminated detector, 75
frown, 164, 166
full frame, 8
full well capacity, 41, 96
full width half maximum (FWHM), 127
gate modulation input, 24
gated antiblooming, 17
geometrical stability, 105
ghost images, 106

hollow-cathode discharge lamps, 182
holmium oxide, 132
hot pixels, 92

imaging spectrometers, 164
imaging spectroscopy, 68
integral nonlinearity, 96
intensified arrays, 108
intensified CCDs, 14
interlaced scan, 19
interline transfer, 8
international standards, 189
inverted-mode operation, 20

kinetics mode, 17
kTC noise, 22

lag, 49, 99
light-emitting diodes (LEDs), 41, 182
light-piping, 104
linearity error, 40
linearity, 40, 148
luminance gauge, 153
luminescence standards, 164
luminous efficacy, 52

machine vision, 60
mean-variance method, 37
microlens arrays, 86
modulation transfer function (MTF), 44, 101
monochromator, 121
monolithic active pixel sensors, 12
MTF, See modulation transfer function
multichannel raman spectroscopy, 67
multi-phase pinned, 20
multiple aperture, 150

multiple source, 150
neutral density filters, 155, 184
noise, 97
nonlinearity, 38, 95
notch filter, 142, 145, 161, 184
Nyquist frequency, 102

offset level, 28, 29

pencil discharge lamps, 181
photoconductive detectors, 4
photodiode, 6
photodiode array, 11
photoemissive detectors, 5
photogrammetry, 63, 114
photometric units, 51
photo-response nonuniformity (PRNU), 32
photovoltaic detectors, 4
pick-up, 107
polychromator, 121
PRNU, See photo-response nonuniformity
progressive scan, 20

quantum efficiency, 49, 75

radiometric imaging, 60
radiometric units, 51
Raman shift standards, 163
Raman spectrometers, 161
Raman spectroscopy, 67
random telegraph signal, 93
readout of IR arrays, 23
reflectance spectrometry, 65
remote sensing, 62
residual bulk image, 77
residual images, 106
resolution, 123
resolution charts, 186
response nonuniformity, 79, 87
responsivity, 47, 136

saturation, 155
slit function, 123
slit width, 124
smear, 104
smile, 164, 165
source follower per detector, 24
spectral photo-response nonuniformity, 34
spectral range, 123
spectrophotometry, 121
spectroradiometry, 121
spurious charge, 28
stray light, 64, 91, 107, 140, 142
stripe filters, 12
summing well, 17
thermal dark charge, 28
thermal imagers, 116
thermal imaging, 63
time delay and integration, 18
transfer standards, 177
traps, 80
tritium betalight, 183
tungsten halogen lamps, 177
tungsten lamps, 175
vibrational spectrometry, 67
vignetting, 107
wavelength calibration, 123, 161
white balance, 115
windowing, 15
x-ray illumination, 35
x-y addressed, 10
ABOUT THE AUTHORS

Gordon Hopkinson has been a member of the technical staff of Sira Ltd. since 1983. During that time he has been involved in many projects using CCDs, active pixel sensors, and IR arrays for space applications and also for industry and defense. He first started working on solid state detector arrays while at the University of Durham, U.K., in the late 1970s, and used some of the first arrays manufactured in Europe (by Plessey Ltd.) for astronomical spectroscopy. Afterwards he moved to Leicester University to help establish the use CCDs for X-ray astronomy.

In recent years, as well as working on custom CCD developments, instrument design, testing and sensor procurement, he has been especially interested in the effects of radiation damage on sensor systems and has been an active participant in the IEEE Nuclear and Space Radiation Effects Conference and the Radiation Effects on Components and Systems (RADECS) conference—as a contributor, reviewer, session chair, awards chair and short course instructor. He has authored more than 30 papers on CCDs and similar detectors.

Teresa Goodman has worked in the Optical Radiation Measurement group at NPL (the U.K.’s national measurement standards laboratory) for about 23 years, with a range of responsibilities that have covered research, development, maintenance, and dissemination of measurement scales and standards for photometry, radiometry, spectroradiometry, spectrophotometry, color, and appearance. Her major research projects have included the first U.K. realization of the candela according to its radiometric definition, and the establishment of the U.K. scale of spectral total flux, together with the development of a calibration facility and transfer standards for its dissemination. She is currently leading work related to the development of scales for mesopic photometry, dosimetry for UV and blue light phototherapy, and human factors. Other responsibilities include “knowledge transfer” activities such as editing the NPL Optical Radiation Measurement Newsletter, ORM News, chairing the NPL ORM Club, laboratory assessments, and preparation of papers, reports, and best practice guides.

Teresa is also heavily involved in international and national standardizing activities and is director of Division 2 of the International Commission on Illumination (CIE). This Division has responsibility for producing recommendations and best practice guidance for all aspects of the measurement of light, color, and optical radiation.
Stuart Prince joined NPL in 1994 and works in the Optical Radiation Measurement Group. He has worked on a number of projects, including evaluation of photometric testing facilities, development of facilities for spectroradiometric measurements on deuterium lamps, research into new source technologies for photometry and spectroradiometry, and establishment of a portable (array-based) spectroradiometer facility. Stuart also took part in the comparison of the UV spectral scale with PTB at BESSY, Berlin. He has investigated methods to increase take up of traceability in the optical radiation metrology area and provided support for the formulation of the 2004-2007 Optical Radiation Metrology Programme. Most recently, he has contributed to a best practice guide for traceable measurements on pulsed sources and has set up a facility to perform spectral measurements on pulsed sources, using a CCD array spectroradiometer.

Before joining NPL, he worked in the scientific sector for 11 years (THORN EMI Electronics and BP Research), and during this time obtained a B.Sc. in Applied Chemistry.