A GUIDE TO THE

Use and Calibration
of Detector Array
Equipment
A GUIDE TO THE

Use and Calibration

of Detector Array

Equipment

Gordon R. Hopkinson
Teresa M. Goodman
Stuart R. Prince

Published in cooperation with Sira Technology Ltd. and NPL (UK)

sira NPL
National Physical Laboratory

SPIE PRESS
Bellingham, Washington USA
Library of Congress Cataloging-in-Publication Data

Hopkinson, Gordon R.
A guide to the use and calibration of detector array equipment / Gordon R. Hopkinson , Teresa M. Goodman, Stuart R. Prince.
p. cm.
Includes bibliographical references and index.
ISBN 0-8194-5532-6 (alk. paper)
TA165.H67 2004
681'.25--dc22 2004016376

Published by

SPIE—The International Society for Optical Engineering
P.O. Box 10
Bellingham, Washington 98227-0010 USA
Phone: +1 360 676 3290
Fax: +1 360 647 1445
Email: spie@spie.org
Web: http://spie.org

Copyright © 2004 The Society of Photo-Optical Instrumentation Engineers

All rights reserved. No part of this publication may be reproduced or distributed in any form or by any means without written permission of the publisher.

The content of this book reflects the work and thought of the author(s). Every effort has been made to publish reliable and accurate information herein, but the publisher is not responsible for the validity of the information or for any outcomes resulting from reliance thereon.

Printed in the United States of America.
PDF ISBN: 9781510607927
CONTENTS

Introduction ix

Chapter 1 Detector Arrays 1

1.1 Types of Detector Arrays 1

1.1.1 Types of Silicon Detector Arrays 3

1.1.2 Color Imaging 10

1.1.3 Intensified CCDs 12

1.1.4 Specialized CCD Readout Modes 13

1.1.5 Resetting of Output Amplifiers and Pixels 19

1.1.6 Readout of IR arrays 21

1.2 Key Parameters and Their Measurement 23

1.2.1 Units 24

1.2.2 Electrical Test Methods 25

1.2.3 Measurements on Dark Images 25

1.2.4 Offset Level 27

1.2.5 Average Dark Signal 27

1.2.6 Dark Signal Nonuniformity (DSNU) 28

1.2.7 Fixed Pattern Noise (FPN) 29

1.2.8 Photo-Response Nonuniformity (PRNU) 30

1.2.9 Charge-to-Voltage Conversion Factor (CVF) and Conversion Gain 32

1.2.10 Temporal Noise 36

1.2.11 Linearity 38

1.2.12 Full Well Capacity (Saturation) 39

1.2.13 Charge Transfer Efficiency (CTE) of a CCD 40

1.2.14 Modulation Transfer Function (MTF) 42

1.2.15 Responsivity (and Spectral Responsivity) 45

1.2.16 Quantum Efficiency (QE) 47

1.2.17 Lag 47

1.2.18 Crosstalk 48

1.2.19 Geometrical Measurements 49

1.3 Photometric versus Radiometric Units 49

1.4 Output Signal Calculations 51

References 52
Chapter 2 Detector Array Equipment and Requirements for Calibration

2.1 Imaging Applications
2.1.1 Machine Vision
2.1.2 Photometric/Radiometric Imaging
2.1.3 Color Measurement
2.1.4 Earth Remote Sensing
2.1.5 Fluorescence Microscopy
2.1.6 Photogrammetry, Profilometry, and Noncontact Metrology
2.1.7 Thermal Imaging
2.2 Spectrometry Applications
2.2.1 General Spectroscopy
2.2.2 Absorbance and Reflectance Spectrometry
2.2.3 Emission Spectrometry
2.2.4 Vibrational Spectrometry
2.2.5 Multichannel Raman Spectroscopy
2.2.6 Imaging Spectroscopy
2.3 Other Applications
References

Chapter 3 Influence of Array Parameters on Instrument Calibration

3.1 Key Array Parameters
3.1.1 Quantum Efficiency (QE)
3.1.2 On-Chip Amplifier Response
3.1.3 Off-Chip Electronics Gain
3.1.4 Response Nonuniformity (Interpixel)
3.1.5 Response Nonuniformity (Intrapixel)
3.1.6 Stray Light
3.1.7 Dark Signal and Dark Signal Nonuniformity
3.1.8 Nonlinearity
3.1.9 Full Well Capacity
3.1.10 Noise
3.1.11 Crosstalk Between Pixels
3.1.12 Lag
3.1.13 Resolution and MTF
3.1.14 Aliasing
3.1.15 Cosmic Ray Effects
3.1.16 Smear
3.1.17 Geometrical Stability
3.1.18 Image Anomalies
3.1.19 Electrical Parameters
3.2 Intensified Arrays
3.3 Conclusions
References
Chapter 4 Calibration Techniques for Instruments

4.1 Imaging Instruments
4.1.1 Silicon-based Array Systems
4.1.2 Thermal Imagers
4.2 Instruments for Spectrometry
4.2.1 Definitions
4.2.2 Wavelength Calibration
4.2.3 Responsivity
4.2.4 Stray Light
4.2.5 Linearity
4.2.6 Dark Reading and External Stray Light
4.3 Multichannel Raman and Emission Spectrometers
4.3.1 Wavelength Calibration
4.3.2 Intensity Calibration
4.4 Imaging Spectrometers
4.4.1 MTF Testing
4.4.2 Wavelength Accuracy
4.4.3 Smile
4.4.4 Frown
References

Chapter 5 Calibration Equipment

5.1 Sources
5.1.1 Continuum Sources
5.1.2 Line Sources
5.1.3 Other Sources
5.1.4 Suppliers of Light Sources
5.2 Filters
5.2.1 Neutral Density Filters
5.2.2 Other Filters
5.2.3 Suppliers of Filters
5.3 Ceramic Tiles
5.4 Grids and Resolution Charts
5.5 Cells for Absorption Spectroscopy
5.6 Contact Details
References

Chapter 6 Comparison of International Standards

Appendix A Reference Guide

A.1 Calibration services and contacts
A.1.1 Accreditation
A.1.2 Calibration
A.2 Bibliography —including general articles, books, and useful websites 192
 A.2.1 General 192
 A.2.2 Arrays 192
 A.2.3 Instrumentation 193
 A.2.4 Calibration 194
A.3 List of Abbreviations 196

Appendix B Glossary of Terms 199

Appendix C Quick Guide to Recommended Calibration Procedures 213
 C.1 Spectrometers 213
 C.1.1 Wavelength Calibration 213
 C.1.2 Responsivity 214
 C.1.3 Stray Light 214
 C.1.4 Linearity 215
 C.1.5 Dark Reading and External Stray Light 215
 C.2 Imagers 216

Index 217
INTRODUCTION

The original version of this user guide appeared in March 2000 and resulted from a program of work sponsored by the National Measurement System Policy Unit (NMSPU) of the U.K. Department of Trade and Industry (DTI). The aim was to benefit industry by identifying the factors influencing the accuracy of measurements obtained with detector array equipment, by developing calibration techniques, and by establishing best practice procedures. It was written primarily for users of instrumentation rather than for detector specialists, and produced as a booklet mainly for small-scale distribution within the U.K. Hopefully, however, the guide has enough detail that even these “experts” will find it useful.

The reception to the original version was extremely favorable and we were therefore encouraged to make it more widely available. In revising the guide for a more worldwide readership, we have tried to leave the majority of the text intact, but to remove those parts that were felt to be overly U.K.-centric.

We also took the opportunity to bring the guide up to date by adding brief sections on electron multiplying (EM) CCDs for low-light-level imaging and on lag effects in CMOS active pixel sensors (APS). The list of references has also been revised and significantly extended. The original guide contained many references to information available via the Web. These have been checked and updated where necessary, and it is hoped that the book will carry on being an up-to-date reference guide for users of detector array instrumentation for a considerable time to come.

Solid state imaging arrays have many advantages as sensors of optical radiation compared with discrete, single-element detectors. For example, the large number of elements gives fine spatial sampling when imaging and a reduction in the measurement time when performing spectrometry. On the other hand, the large number of pixels and the complexity of array structures lead to special issues for measurement and calibration; issues which, until now, have not been addressed in any systematic way. These can arise both for the developer of array-based instrumentation (who wishes to specify, measure, and predict detector performance for his application and to provide an adequate calibration) and for the user (who may wish to assess and maintain the accuracy of his overall system).

At the start of the original study a survey was made, by questionnaire and selected interviews, of U.K. users and manufacturers/developers. This was undertaken with the help of Atkins Management Consultants, with the objective of determining equipment usage and calibration requirements and obtaining views on the preferred content and format of the user guide. Key parameters and calibration methods were then assessed in detail and measurements on typical systems performed. This work culminated in the preparation of this guide, which contains both a review of the existing literature and a large amount of new experimental data (obtained during the course of the work). The main emphasis has been on UV, visible, and near-infrared systems that use silicon detector technology, but an attempt has also been made to address the issues arising in thermal imaging with infrared detector arrays.
An outline of the guide is presented in the table on the following page. In understanding requirements for instrument calibration, it is important to realize that the detector array is not simply a black box that translates optical to electrical signals, but is a complex assemblage in which a variety of physical processes are taking place (for example, optical absorption, charge transport, and noise/dark current generation). Even in detectors for the visible region there are several detector forms, each with its own characteristics; and in the infrared the variety of array technologies multiplies rapidly. Hence, the guide starts (in Chapter 1) with an overview of detector technologies and key performance parameters. It is hoped that Sec. 1.2, which deals with the detailed definition and measurement of detector parameters will be of interest, not only to detector manufacturers and instrument developers, but also to users—first, because many of the techniques described can be used at instrument level (although more detailed guidance for users of array based systems can be found in Chapter 4); and second, since some insight is provided into the dependence of the results on measurement conditions. Chapter 1 also discusses measurement units, which are often a considerable source of confusion.

Chapter 2 gives a brief introduction to the various types of instrumentation that use detector arrays and the requirements for calibration. Chapter 3 discusses in some detail the influence of operating conditions on detector performance. It is these changes in performance which often result in the need for instrument calibration.

Further information on calibration techniques is given in Chapter 4, where there is a special emphasis on the calibration of instruments for spectrometry. Chapter 5 reviews the use of common items of calibration equipment, such as light sources, filters, and ceramic tiles, and gives guidance on the selection of components. Chapter 6 briefly reports on international efforts to harmonize measurement standards.

Each chapter is provided with a list of literature references, which the reader is encouraged to consult for further information. Sources of information of more general interest are included in Appendix A. Throughout the guide, references are made to information available on the Web. Though these resources are somewhat ephemeral (websites and their content may change), the wealth of easily accessible information considerably eases the task of assessing technology trends and sharing standards information. Appendix A also includes a list of abbreviations, and a glossary of terms can be found in Appendix B. Appendix C summarizes the recommended practices for spectrometer and imager calibration in a Quick Guide.

Gordon Hopkinson
Teresa Goodman
Stuart Prince
August 2004
Outline of the User Guide

<table>
<thead>
<tr>
<th>Interest</th>
<th>Chapter /Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>General</td>
<td></td>
</tr>
<tr>
<td>Reference guide</td>
<td>Appendix A</td>
</tr>
<tr>
<td>Glossary</td>
<td>Appendix B</td>
</tr>
<tr>
<td>Detector arrays</td>
<td></td>
</tr>
<tr>
<td>Types of detector array (CCDs, CIDs, APS, PDAs, etc.)</td>
<td>1.1</td>
</tr>
<tr>
<td>Key parameters and their measurement</td>
<td>1.2</td>
</tr>
<tr>
<td>Influence of operating conditions on array performance and instrument calibration</td>
<td>3</td>
</tr>
<tr>
<td>Instrumentation</td>
<td></td>
</tr>
<tr>
<td>Types of instruments and their calibration requirements</td>
<td>2</td>
</tr>
<tr>
<td>Calibration</td>
<td></td>
</tr>
<tr>
<td>Imagers (including color and thermal imagers)</td>
<td>4.1, 2.1</td>
</tr>
<tr>
<td>Spectrometers (including Raman and imaging spectrometers)</td>
<td>4.2, 4.3, 4.4</td>
</tr>
<tr>
<td>Equipment (e.g., sources and filters)</td>
<td>5</td>
</tr>
<tr>
<td>International standards</td>
<td>6</td>
</tr>
<tr>
<td>Quick Guide</td>
<td>Appendix C</td>
</tr>
</tbody>
</table>