References

[59] M. J. Flynn, DisplayTool software, available upon request to mikef@rad.hfh.edu.

Index

A

AAPM, 137
active drive, 43
active matrix (AM)
 addressing, 82, 84
defined, 44
adaptation, 9
addressing schemes, 81
ambient illumination, 18, 100, 105–107
aperture grille, 17, 32
aperture ratio, 45, 99

B

backlight, 43
backscattering, 17
bandwidth, 31
barrier, 79
bidirectional reflection distribution function, 131
birefringent films, 51

C

carrier
 injection, 57–58
 mobility, 59
cathodo-luminescent display, 25, 29
CCD camera, 124, 126
charge-transport layer, 57
color bleeding, 69
color filters, 42
cones, 10
conic probe, 116
contrast
 physical, 5
 ratio, 100, 114
 threshold, 6
copolymers, 64
cosine distribution, 48
cost, 1, 52
crosstalk
 classification, 116
electronic, 48
 optical, 48

cRT emissions
 Lambertian, 109
 quasi-Lambertian, 109
current-driven pixel electrode circuits, 93

D
dark spots, 64, 77
deflection, 31
Dexter transfer, 61
diffuse reflectance, 129
diffuse reflection coefficient, 21, 133
DIN, 137
direct addressing, 82
director, 40
dispenser cathodes, 26
display
 calibration, 106
 controller, 36
 metrology, 105
 requirements, 22
down conversion, 69
 driving circuits, 81
dust particles, 77
dynamic focus, 33

E
electroluminescence, 56
electron gun, 28
capsulation, 74, 79
energy transfer, 61
etching process, 67
exciton, 60

F

field effect mobility, 85
fluorescence, 60
Forster transfer, 61
Fourier
 analysis, 124, 126
 optics, 113
Fowler-Nordheim model, 58
full-color display, 104
Index

spatial frequency, 6
spatial noise, 126
specular reflection, 20, 129
spin coating, 66
spot size, 33
static drive, 43
storage capacitor, 85
subpixel structures, 65, 75, 127

T
temporal noise, 126
thin-film transistor (TFT)
a-Si:H, 86
defined, 44
organic, 86
poly-Si, 87
uses, 84-85
thermal evaporation, 66

V
vertical-aligned liquid crystals, 54
VESA, 138
voltage-driven pixel electrode
circuit, 91

W
white box, 132
Aldo Badano received his Ph.D. degree in Nuclear Engineering from the University of Michigan in 1999. He is currently a research scientist with the Division of Imaging and Applied Mathematics, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, at the U.S. Food and Drug Administration, where he leads a research program on the evaluation of medical displays. Dr. Badano’s research focuses on the objective assessment of image quality in medical imaging sensors and image display devices using advanced experimental and computational methods. He is a referee for several scientific journals and a reviewer of technical grants for the U.S. Department of Defense and the National Institutes of Health. He has authored or coauthored more than 60 publications. He is a member of SID, AAPM, and SPIE.

Michael Flynn obtained his Ph.D. in Nuclear Science from the University of Michigan in 1975. He is presently a Senior Scientist at Henry Ford Health System in Detroit, Michigan, where he conducts sponsored research on medical display, digital radiography, and computed tomography. Currently an Adjunct Professor of Nuclear Engineering and Radiological Science at the University of Michigan, Dr. Flynn has taught a graduate course on radiation imaging for over 20 years. His scientific work emphasizes the importance of high-fidelity display to complete the medical imaging process.

Jerzy Kanicki received his Ph.D. degree in Sciences (D.Sc.) from the Universite Libre de Bruxelles (Belgium) in 1982. He subsequently became a Research Staff Member at the IBM Thomas J. Watson Research Center in Yorktown Heights, New York, working on hydrogenated amorphous silicon devices for photo-voltaic and flat-panel display applications. In 1994 he moved to the University of Michigan as a Professor in the Department of Electrical Engineering and Computer Science, where he did leading work on various flat-panel display technologies until 2000. Since 2000 he has worked on a variety of fundamental problems related to organic and molecular electronics. In 2002–2003 he spent a sabbatical year at the Center for Polymers and Organic Solids, University of California-Santa Barbara, conducting research in the area of conducting polymer devices. Dr. Kanicki is the author or coauthor of over 250 publications in journals and conference proceedings, and he has edited two books and three conference proceedings. He has presented numerous invited talks at national and international meetings in the area of organic and inorganic semiconductor devices. More information about his research group activities can be found at www.eecs.umich.edu/omelab/.