Optics Using MATLAB®
Tutorial Texts Series

- Design and Fabrication of Diffractive Optical Elements with MATLAB®, A. Vijayakumar and Shanti Bhattacharya, Vol. TT109
- Energy Harvesting for Low-Power Autonomous Devices and Systems, Jahangir Rastegar and Harbans S. Dhadwal, Vol. TT108
- Practical Electronics for Optical Design and Engineering, Scott W. Teare, Vol. TT107
- Automatic Target Recognition, Bruce J. Schachter, Vol. TT105
- Design Technology Co-optimization in the Era of Sub-resolution IC Scaling, Lars W. Liebmann, Kaushik Vaidyanathan, and Lawrence Pileggi, Vol. TT104
- Special Functions for Optical Science and Engineering, Vasudevan Lakshminarayanan and L. Srinivasa Varadharajan, Vol. TT103
- Discrimination of Subsurface Unexploded Ordnance, Kevin A. O’Neill, Vol. TT102
- Introduction to Metrology Applications in IC Manufacturing, Bo Su, Eric Solecky, and Alok Vaid, Vol. TT101
- Introduction to Liquid Crystals for Optical Design and Engineering, Sergio Restaino and Scott Teare, Vol. TT100
- Design and Implementation of Autostereoscopic Displays, Byoungho Lee, Soon-gi Park, Keehoon Hong, and Jisoo Hong, Vol. TT99
- Ocean Sensing and Monitoring: Optics and Other Methods, Weilin Hou, Vol. TT98
- Interferometry for Precision Measurement, Peter Langenbeck, Vol. TT94
- Modeling the Imaging Chain of Digital Cameras, Robert D. Fiete, Vol. TT92
- Bioluminescence and Fluorescence for In Vivo Imaging, Lubov Brovko, Vol. TT91
- Polarization of Light with Applications in Optical Fibers, Arun Kumar and Ajoy Ghatak, Vol. TT90
- Digital Fourier Optics: A MATLAB Tutorial, David G. Voeltz, Vol. TT89
- Optical Design of Microscopes, George Seward, Vol. TT88
- Nanotechnology: A Crash Course, Raúl J. Martin-Palma and Akhlesh Lakhtakia, Vol. TT86
- Direct Detection LADAR Systems, Richard Richmond and Stephen Cain, Vol. TT85
- Optical Design: Applying the Fundamentals, Max J. Riedl, Vol. TT84
- Fundamentals of Polarimetric Remote Sensing, John Schott, Vol. TT81
- The Design of Plastic Optical Systems, Michael P. Schaub, Vol. TT80
- Fundamentals of Photonics, Chandra Roychoudhuri, Vol. TT79
- Matrix Methods for Optical Layout, Gerhard Kloos, Vol. TT77
- Fundamentals of Infrared Detector Materials, Michael A. Kinch, Vol. TT76
- Bioluminescence for Food and Environmental Microbiological Safety, Lubov Brovko, Vol. TT74
- Introduction to Image Stabilization, Scott W. Teare and Sergio R. Restaino, Vol. TT73
- Introduction to Confocal Fluorescence Microscopy, Michiel Müller, Vol. TT69
- Artificial Neural Networks: An Introduction, Kevin L. Priddy and Paul E. Keller, Vol. TT68
- Basics of Code Division Multiple Access (CDMA), Raghuviree Rao and Sohail Dianat, Vol. TT67

(For a complete list of Tutorial Texts, see http://spie.org/publications/books/tutorial-texts.)
Optics Using MATLAB®

Scott W. Teare

Tutorial Texts in Optical Engineering
Volume TT111

SPIE PRESS
Bellingham, Washington USA
Introduction to the Series

Since its inception in 1989, the Tutorial Texts (TT) series has grown to cover many diverse fields of science and engineering. The initial idea for the series was to make material presented in SPIE short courses available to those who could not attend and to provide a reference text for those who could. Thus, many of the texts in this series are generated by augmenting course notes with descriptive text that further illuminates the subject. In this way, the TT becomes an excellent stand-alone reference that finds a much wider audience than only short course attendees.

Tutorial Texts have grown in popularity and in the scope of material covered since 1989. They no longer necessarily stem from short courses; rather, they are often generated independently by experts in the field. They are popular because they provide a ready reference to those wishing to learn about emerging technologies or the latest information within their field. The topics within the series have grown from the initial areas of geometrical optics, optical detectors, and image processing to include the emerging fields of nanotechnology, biomedical optics, fiber optics, and laser technologies. Authors contributing to the TT series are instructed to provide introductory material so that those new to the field may use the book as a starting point to get a basic grasp of the material. It is hoped that some readers may develop sufficient interest to take a short course by the author or pursue further research in more advanced books to delve deeper into the subject.

The books in this series are distinguished from other technical monographs and textbooks in the way in which the material is presented. In keeping with the tutorial nature of the series, there is an emphasis on the use of graphical and illustrative material to better elucidate basic and advanced concepts. There is also heavy use of tabular reference data and numerous examples to further explain the concepts presented. The publishing time for the books is kept to a minimum so that the books will be as timely and up-to-date as possible. Furthermore, these introductory books are competitively priced compared to more traditional books on the same subject.

When a proposal for a text is received, each proposal is evaluated to determine the relevance of the proposed topic. This initial reviewing process has been very helpful to authors in identifying, early in the writing process, the need for additional material or other changes in approach that would serve to strengthen the text. Once a manuscript is completed, it is peer reviewed to ensure that chapters communicate accurately the essential ingredients of the science and technologies under discussion.

It is my goal to maintain the style and quality of books in the series and to further expand the topic areas to include new emerging fields as they become of interest to our reading audience.

James A. Harrington
Rutgers University
Contents

Preface xi

I MATLAB® Overview 1

1 Introduction to MATLAB 3
 1.1 Getting Started with MATLAB 4
 1.2 Anatomy of a Program 6
 1.3 MATLAB Basic Functions and Operators 8
 1.4 Simple Calculations using MATLAB 10
 1.5 Vectorization and Matrix Indexing 12
 1.6 MATLAB Scripts 13
 1.7 MATLAB Functions 14
 1.8 Practice Problems 16
 References 16

2 Plotting Mathematical Functions 19
 2.1 Mathematical Functions 19
 2.2 Visualization Functions: plot() 25
 2.3 Visualization Functions: histogram() 27
 2.4 Visualization Functions: 3D plotting 30
 2.5 Visualization Functions: contour() and quiver() 32
 2.6 Visualization Function: imagesc() 35
 2.7 Practice Problems 35
 References 36

3 Curve Fitting and Statistics 37
 3.1 Polynomial Synthesis and Curve Fitting 37
 3.2 Polynomial Curve Fitting 41
 3.3 Signal-to-Noise Ratio 44
 3.4 Best Fit through the Data 47
 3.5 Best Fit to the Data 49
 3.6 Practice Problems 50
 References 50
Contents

4 Data and Data Files
4.1 Text versus Binary
4.2 Writing Data Files
4.3 Generating Data to be Saved
4.4 Reading and Using Data Files
4.5 Binary MAT Files
4.6 Binary Image Files
4.7 Practice Problems
References

5 Images and Image Processing
5.1 Image Files
5.2 Image Commands
5.3 Image Size and Super-pixels
5.4 Color Models and Conversions
5.5 Spatial Filtering
5.6 Practice Problems
References

II Optics Applications

6 Ray Optics and Glass Equations
6.1 Lensmaker's Equation and Spot Size
6.2 Paraxial Region and Snell's Law
6.3 Matrix Approach to Ray Tracing
6.4 Ray Tracing through Multiple Elements
6.5 Glass Equations
6.6 Practice Problems
References

7 Spectrometers
7.1 Dispersion in a Material
7.2 Prisms
7.3 Gratings
7.4 Blazed Gratings
7.5 Grisms
7.6 Spectrometers and Monochrometers
7.7 Practice Problems
References

8 Modulation Transfer Function and Contrast
8.1 Image Quality
8.2 Spatial Frequency and the Modulation Transfer Function
8.3 Point Spread Function
8.4 MTF Measurement

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 10 Nov 2019
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use
Contents

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.5</td>
<td>Effect of Annular Optics on MTF</td>
<td>116</td>
</tr>
<tr>
<td>8.6</td>
<td>Image Transformation</td>
<td>120</td>
</tr>
<tr>
<td>8.7</td>
<td>Practice Problems</td>
<td>123</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>123</td>
</tr>
<tr>
<td>9</td>
<td>Diffraction and Interference</td>
<td>125</td>
</tr>
<tr>
<td>9.1</td>
<td>Interference</td>
<td>126</td>
</tr>
<tr>
<td>9.2</td>
<td>Coherence</td>
<td>127</td>
</tr>
<tr>
<td>9.3</td>
<td>Diffraction</td>
<td>129</td>
</tr>
<tr>
<td>9.4</td>
<td>Young’s Double-Slit Experiment</td>
<td>132</td>
</tr>
<tr>
<td>9.5</td>
<td>Michelson Stellar Interferometer</td>
<td>133</td>
</tr>
<tr>
<td>9.6</td>
<td>Mach–Zehnder Interferometer</td>
<td>136</td>
</tr>
<tr>
<td>9.7</td>
<td>Practice Problems</td>
<td>137</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>138</td>
</tr>
<tr>
<td>10</td>
<td>Zernike Polynomials and Wavefronts</td>
<td>139</td>
</tr>
<tr>
<td>10.1</td>
<td>Wavefront Sensing in Adaptive Optics</td>
<td>139</td>
</tr>
<tr>
<td>10.2</td>
<td>Wavefront Aberrations</td>
<td>143</td>
</tr>
<tr>
<td>10.3</td>
<td>Zernike Polynomials</td>
<td>144</td>
</tr>
<tr>
<td>10.4</td>
<td>Wavefront Construction</td>
<td>150</td>
</tr>
<tr>
<td>10.5</td>
<td>Practice Problems</td>
<td>153</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>153</td>
</tr>
<tr>
<td></td>
<td>Further Reading</td>
<td>153</td>
</tr>
<tr>
<td>11</td>
<td>Polarization</td>
<td>155</td>
</tr>
<tr>
<td>11.1</td>
<td>Polarized Light</td>
<td>155</td>
</tr>
<tr>
<td>11.2</td>
<td>Double Refraction</td>
<td>158</td>
</tr>
<tr>
<td>11.3</td>
<td>The Jones Calculus: Polarizers</td>
<td>159</td>
</tr>
<tr>
<td>11.4</td>
<td>The Jones Calculus: Phase Retarders</td>
<td>162</td>
</tr>
<tr>
<td>11.5</td>
<td>The Mueller Calculus</td>
<td>165</td>
</tr>
<tr>
<td>11.6</td>
<td>Jones-to Mueller Transformation</td>
<td>168</td>
</tr>
<tr>
<td>11.7</td>
<td>Practice Problems</td>
<td>169</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>170</td>
</tr>
<tr>
<td>12</td>
<td>Optical Interference Filters</td>
<td>171</td>
</tr>
<tr>
<td>12.1</td>
<td>Transfer Matrix for Thin Films</td>
<td>171</td>
</tr>
<tr>
<td>12.2</td>
<td>Antireflection Systems</td>
<td>173</td>
</tr>
<tr>
<td>12.3</td>
<td>High-Reflectance Systems</td>
<td>176</td>
</tr>
<tr>
<td>12.4</td>
<td>Bandpass Filters</td>
<td>179</td>
</tr>
<tr>
<td>12.5</td>
<td>Composite Filters</td>
<td>182</td>
</tr>
<tr>
<td>12.6</td>
<td>Index of Refraction Calculation</td>
<td>184</td>
</tr>
<tr>
<td>12.7</td>
<td>Practice Problems</td>
<td>185</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>185</td>
</tr>
</tbody>
</table>
13 Metals and Complex Index of Refraction 187
13.1 Physical Vapor Deposition 187
13.2 Index of Refraction in Absorbing Media 189
13.3 Reflectivity of Metal Films 189
13.4 Absorption and Transmission in Metal Films 192
13.5 Impedance Matching 194
13.6 Practice Problems 200
References 200

III More with MATLAB® 203

14 User Interfaces 205
14.1 Simple User Interfaces 205
14.2 Built-In Interfaces 207
14.3 Graphical User Interfaces: GUIDE 210
14.4 Applications: App Designer 213
14.5 Zernike GUI Project 215
14.6 Practice Problems 217
References 218

15 Completing and Packaging Programs 219
15.1 P-Code 219
15.2 Publishing 221
15.3 Version Control 222
15.4 Interfacing with other Programming Languages 223
15.5 Object-Oriented Programming and More 226
References 227

Bibliography 229
Index 231
Preface

Optical engineers make use of a wide variety of commercial software tools in the design, development and testing of optical systems. These tools, no matter how excellent in their own right, can fall short of providing needed calculations. This need for flexibility and special calculations is the domain of user-programmable software.

Optics Using MATLAB® was written to tie a number of optical topics into programming activities with MATLAB and can act as a supplement to other textbooks or stand alone. The book is divided into three parts: Part I has five chapters focused on a wide range of basic programming fundamentals using MATLAB and includes topics such as curve fitting, image processing, and file storage. The eight chapters of Part II provide a review of a number of selected topics in optics and demonstrate how these can be explored using MATLAB scripts. Part III discusses how to use MATLAB to improve the usability of custom programs through graphical user interfaces and incorporating other programming languages.

The book was designed such that you can get started on any chapter that catches your attention and seek more specialized information from the earlier chapters as needed. Some examples of the topics in Part II are thin film filters, spectrometers, polarization, complex index of refraction, and wavefront sensing.

Optics Using MATLAB provides a functional overview of developing code using MATLAB that can be used to enhance and increase the understanding of optics topics though the use of visualization tools. This book is not meant to be a fundamental treatment of optics, but rather a complement to the many excellent books on optics, while providing an example-based approach to understanding the underlying optical questions.

I greatly appreciate all of the colleagues and friends who have both directly and indirectly helped me in preparing and writing this book, and I am grateful for their unswerving and unselfish support. I also appreciate the feedback from the many students who over the years have helped me refine my optics and electronics lectures and laboratories.

While I have benefited from the support of many individuals in preparing this work, any errors that remain in the text are mine to fix. I would
appreciate receiving any assistance in the form of comments and corrections. Please direct any correspondence to the author at scott.teare@nmt.edu.

I am most grateful for the support of SPIE for their interest in publishing this work as part of the *Tutorial Text* series and particularly the efforts of Senior Editor Dara Burrows, for putting this work into its final form.

Scott W. Teare
Socorro, New Mexico
December 2016