Index

A
absorptive filter, 179
adaptive optics, 225
Airy pattern, 142, 95–96
amplitude of a wave, 81, 83
amplitude transfer function (ATF), 135
angular dispersion, 175
angular frequency, 81, 83
angular spectrum, 117–121
aspheric lens, 155–157
aspheric surface, 156
atmospheric turbulence, 225, 229–230, 232–234
crystal, 154

B
bandpass filter, 181
beam-scanning system, 204–205
beam-splitting prism, 170
blazing, 178

C
charge-coupled device (CCD), 190
CMOS sensor, 191
coherence, 99, 100
cohere length, 104, 231
correlation, 104, 232, 234–235
cylindrical mirror, 161
cylindrical lens, 153–154
deformable mirror, 241–243
detectivity, 192
detector array, 190
detector pinhole, 203
dielectric constant (see also electric permittivity), 78
diffraction, 6, 9, 10–11
diffraction factor, 173
dispersing prism, 164–165
division of the amplitude, 109
division of the wavefront, 107
drum lens, 153
dual-wavelength digital holography, 208, 210
Einstein coefficients, 147–148
electric charge density, 78
electric conductivity, 78
electric current density, 78
electric displacement, 78

275
electric field (see also electric vector), 78, 83
electric permittivity (see also dielectric constant), 78, 80
electric vector (see also electric field), 78, 83
ellipsoidal mirror, 161
energy levels, 147–150
eye relief, 200
eyepiece, 198–200

F
Fabry–Pérot interferometer, 111
far-field diffraction, 93
filter, 179
fineness of fringes, 113
Fourier optics, 116, 122, 125, 133
Fourier transform, 90, 93, 113, 115–117, 119, 122–123, 125, 129–131, 135
Fraunhofer approximation, 93
Fraunhofer diffraction integral, 93
free spectral range, 177
frequency, 116–117, 83, 135
Fresnel approximation, 88–90, 93
Fresnel diffraction integral, 89–90, 93
fringe pattern (see also interference pattern), 99, 101–102, 105, 107, 109, 111, 116
fringe sharpness, 113
fringes of equal inclination, 112
fringes of equal thickness, 110

G
graded-index fiber, 183
grating resolution, 175–176
gratings, 171

H
half-intensity width, 113
Helmholtz equation, 81, 86
higher-index medium, 25
Huygens–Fresnel principle, 87, 103
hyperbolical mirror, 161

I
illumination pinhole, 203
incident angle, 22, 24–26, 42, 55–56
incident plane, 53
incident ray, 22–24, 31, 55, 57
incoherent light sources, 148
index of refraction, 19–20, 26
influence function, 245, 254–255
interference, 6, 11, 76, 99, 101–103, 109, 179
interference filter, 180
interference pattern (see also fringe pattern), 99, 109, 110
interference term, 101, 106
isoplanatic condition, 89, 135

K
Kolmogorov power spectrum, 234

L
laser, 149–150
lateral shearing interferometer, 238, 240
law of reflection, 23–24
law of refraction, 23–24, 28, 54–55, 59
light, 3–4, 9, 10
light intensity, 83, 95, 100, 102, 105, 108, 114, 135
light rays, 18, 20, 29, 41
light sources, 147
linearity, 193
longpass filter, 180
lower-index medium, 25

M
magnetic field (see also magnetic vector), 78
magnetic induction, 78
magnetic permeability, 78, 80
magnetic vector (see also magnetic field), 78, 83
Maxwell’s equations, 76, 79
microscope, 194
mode, 183–184, 186
modulation transfer function (MTF), 136
multibeam interference, 111
multibeam interference factor, 173
multimode fiber, 185
mutual coherence function (see also cross-correlation function), 101

N
near-field diffraction, 93
negative (diverging) lenses, 151, 160
neutral-density filter, 182
noise, 192
noise equivalent power, 192
numerical aperture (NA), 198

O
objective, 194, 197, 199, 203
optical detectors, 186
optical fiber, 183
optical filter, 178
optical Fourier spectrum, 126
optical path (see also optical path length), 105, 109, 137
optical path difference (OPD), 102, 105–106, 108, 137
optical path length (OPL) (see also optical path), 20, 30, 137
optical systems, 10, 12
optical transfer function (OTF), 136
optical wedge, 158
order of grating/interference, 173–174
order of interference, 109

P
paraboloidal mirror, 161
parallel beam, 18–19
peak-to-valley (PV) value, 139
pentaprism, 169
phase, 81, 83–84, 132
phase structure function, 231–232
photoconductive detector, 188
photodiode, 189
photoelectric effect, 4–5
photoemissive detector, 187
photomultiplier, 187
photon detector, 187
photovoltaic detector, 188
pinholes, 203–204
plane mirror, 159–160
plane wave, 18, 22, 81
plane-parallel plate, 157–158
point diffraction Mach–Zehnder interferometer, 214–215
point spread function, 90, 133–135
polarization, 76, 82
Porro prism system, 166, 168
positive (converging) lens, 151, 160
Poynting vector, 83
prism, 164
pyroelectric detector, 187

Q
quantum efficiency, 192

R
Rayleigh criterion, 142
Rayleigh–Sommerfeld formula, 81, 86–88
reflected angle, 23–24
reflected ray, 23, 25
reflecting prism, 166
reflection, 18, 25, 43, 51
refracted angle, 23–25, 28
refracted ray, 23, 25
refraction, 18, 28, 43, 51
response time, 193
responsivity, 192
right-angle prism, 168
root-mean-square (RMS) value, 139

S
scanning system, 204
seeing, 248–249
segmented mirror, 208, 215, 242
Shack–Hartmann (SH) wavefront sensor, 236, 238, 251
shortpass filter, 181
single-mode fiber, 185
Snell’s law, 23, 25, 41, 51
space-invariant system, 89
spatial coherence, 105, 115
spatial dispersion, 175
Sparrow criterion, 142
specimen-scanning system, 204
spectral lines, 174–176
spectral response, 192
spherical ball lens, 152
spherical lens, 151, 155–156
spherical waves, 18, 81–82, 87, 133
spontaneous emission, 148–149
step-index fiber, 183
stimulated absorption, 147–148, 150
stimulated emission, 148, 150
structure function of the refractive index, 229–230

Strehl ratio, 142–143

T
temporal coherence, 103, 113
thermal detectors, 186
thermoelectric detector, 186
tip/tilt mirror, 241, 256–257
total internal reflection, 25–26
two-beam interference, 107, 109, 111

V
visibility of fringes, 102, 107

W
wave equations, 80–81
wave vector, 81, 83, 118
wave–particle duality, 6–7, 12
wavefront, 11, 18, 30
wavefront aberration, 136, 138–140, 142
wavefront correction, 241, 258
wavefront sensing, 235, 258
wavelength of light, 83–84, 90, 111
wavenumber, 81
work function, 5

Z
Zernike polynomials, 140, 142
Sijiong Zhang received his Ph.D. degree in optical instruments from the department of optical engineering at Beijing Institute of technology in 1996, his M.Sc. in Optics at Xi’an Institute of Optics and Fine Mechanics in 1989, and his B.Sc. degree in physics at Inner Mongolia University in 1986. He was an optical scientist and senior optical scientist at Heriot-Watt University, University of Cambridge, and STS, Imperial College from 1999 to 2010. He has been a professor of Adaptive Optics for astronomy at Nanjing Institute of Astronomical Optics and Technology (Chinese Academy of Sciences) since July 2010. His research interests are in adaptive optics and optical imaging.

Changwei Li received his Ph.D. degree in optics from the department of physics at Harbin Institute of Technology in 2010, and his B.Sc. degree in physics at Northeast Normal University in 2005. He held a post-doctorate position in adaptive optics from 2010 to 2012 at Nanjing Institute of Astronomical Optics and Technology (Chinese Academy of Sciences) before becoming a full-time faculty member in 2012. His research interest is in adaptive optics.

Shun Li received his Ph.D. degree in optics from Changchun Institute of Optics, Fine Mechanics and Physics (Chinese Academy of Sciences) in 2012, and his B.Sc. degree in electronic science and technology from the School of Physical Engineering at Zhengzhou University in 2004. He has been a staff member of Nanjing Institute of Astronomical Optics and Technology (Chinese Academy of Sciences) since 2012. His research interests include adaptive optics and digital holography.