Index

A
- *a priori* probability, 28
- activity, 135, 176, 186, 190, 191
- adaptive, 181, 184, 189
- aided target recognition, 1
- all-versus-all (AvA), 185
- anomaly detection, 38
- asynchronous clock, 181
- automatic target tracker, 135
- autonomy, 205
- axons, 173, 175

B
- bagging, 120
- biomimicry, 59
- boosting, 120

C
- CFAR detector, 65
- change detection, 8
- classification, 105, 186, 192
- clock frequency, 176
- clutter level, 20
- clutter object, 11
- committee machine, 120
- compressive imaging, 60
- computational explanatory gap, 210
- computational imaging, 60
- concept of operations, 83
- conceptual knowledge, 204
- confidence interval, 29
- confusion matrix, 25
- constant false alarm rate per image, 38
- continuous learning, 177, 183, 184
- convolutional neural network (CNN), 123, 179, 187
- correlation, 38
- decision tree classifier, 120
- decision tree, 22, 185, 186
- Deep Learning, 120
- dendrites, 173
- detection criterion, 7
- don’t care object, 13
- embodied, 178, 184, 188
- ensemble classifiers, 120
- events, 135, 187
- experimental design, 30
- false alarm, 11
- false alarm rate, 12
- feature extraction, 94
- feature selection, 99
- feature-aided tracking, 135
- fingerprinting, 8
- force structure, 58, 207
- forensics, 135
G
generative adversarial network, 191
graphics processing unit, 179, 182
ground truth, 5

H
hierarchical temporal memory, 122, 185, 186, 191, 194
histogram of optical flow, 103
histogram of oriented gradients, 103
human subjects, 32, 193
hyperspectral imagery, 66

I
image truth, 6, 8
Institutional Review Board, 32
Integrated Product Team, 82

K
Kalman filter, 135

L
latency, 172, 176, 181
learning vector quantization, 115
learning-on-the-fly, 59
linear classifier, 106
long short-term memory, 122, 184

M
map seeking circuit, 118
mean-shift tracker, 135
metacognition, 210
model-based classifier, 118
moving target indication, 39
MSTAR, 118
multilayer perceptron, 116
multimodality, 183
multisensor fusion, 183, 209

N
 naïve Bayes classifier, 112
neocortex, 172, 175
neural network, 55, 135
neuromorphic chip, 179, 181
neuron, 135, 172, 173, 175, 176, 178, 179
neuroplasticity, 184, 189
No Free Lunch Theorem, 78

O
Occam’s razor, 80
one-versus-all (OvA), 185
one-versus-one (OvO), 185
ontology, 21
operating conditions, 5
order of battle, 207

P
parallelism, 179, 183
pattern of life, 135
perceptron, 113
performance parameters, 33
persistent surveillance, 135
photon, 61
plastic, 184, 189
pre-mission briefing, 203
probability of (correct) classification, 25
probability of detection, 14
probability of false alarm, 14

Q
quaternions, 135

R
Random Forest™, 120
receiver operating characteristic curve, 15
recurrent neural network, 135, 179, 182, 184, 190
Reed–Xiao algorithm, 67
region-of-interest, 12, 187
reinforcement learning, 184, 189, 192
rules of engagement, 206
S
sapient ATR, 211
Scale-Invariant Feature Transform, 63
scene gist, 201
sentient ATR, 126, 211
single-nearest-neighbor classifier, 110
situated, 184, 188
sleep, 181
spatial scale, 40
spikes, 173, 175, 178, 181
spoke filter, 54
stacking methods, 120
stationary target indication, 39
strawman, 135, 184–186, 189
strong artificial intelligence, 211
super-intelligent ATR, 211
support vector machine, 107
surprise, 61
synapse, 172, 173, 179, 181
system design, 82
T
target classifier, 78
target detection, 7, 10
target polarity, 40
target, 5
taxonomy, 21, 185
template matcher, 57
test plan, 31
transfer learning, 191
triple window filter, 43
Turing test, 194, 198
U
Ugly Duckling Theorem, 78
X
Xpatch®, 63, 118
Bruce J. Schachter is an engineer whose work has focused on automatic target recognition (ATR) for more than forty years. He was on the team that developed the first Automatic Target Recognizer at the University of Maryland, then later at Northrop Grumman. He has been program manager or principal investigator of a dozen ATR programs. His previous books are Pattern Models and the award-winning Computer Image Generation. The author can be contacted at Bruce.Jay.Schachter@gmail.com.