Bibliography

There are numerous basic texts on laser design and optical resonators. Some examples are

One of the most often-cited and comprehensive texts on laser crystals is

Books providing useful information on nonlinear optics are

References

Index

A
absorption spectrum of Cr:LiCAF, 78
cousto-optic Q-switch, 83
active volume, 12
alexandrite laser, 78
AlGaInP laser diodes, 75, 78
amplitude noise, 86
anamorphic optics, 18
ASE, 8, 16
astigmatism, 18

B
birefringent tuner, 88
Brewster's angle, 63, 88
broad-stripe laser diodes, defined, 65

cavity decay time, 35
cleaving, 16
colquiriite crystals, 78
cconfocal resonator, 8
copper heat sink, 16
Cr,Nd:GSGG, 79
Cr:LiCAF, 78
Cr:LiSAF, 78
Cr ions, 75
Cr-doped lasers, 78
Cr-doped lasers, absorption bandwidth, 78
Cr-doped lasers, gain cross section, 79
crystal acceptance angle, 86

dependency of SHG on fundamental power, 86
dew point, 33
diffraction loss, 11
diffraction limit, 43
diffusion bonded, 73
diode arrays, 58
dye jet, 80
dye laser, 67, 69, 80

e
eigenmodes, 9
electrical-to-optical conversion efficiency, 50
d end mirrors, 8
d end pumping, 12
d end pumping, advantages, 27
d end pumping, confocal resonator, 36
d end pumping, disadvantages, 28
d end pumping, pump optics, 37
d end pumping, rod coatings, 36
ej epitaxial growth, 16
e xtraction efficiency, 51

F
Fabry-Pérot interferometer, 8
Fabry-Pérot resonator, 88
Faraday rotator, 87
fiber lens, 69
fiber-coupled diodes, optical coupling losses, 20
filamentation, 58
Findlay-Clay analysis, 45, 48
fluorescence quantum efficiency, 50

g
gain aperture, 27, 28
gain element, 7
gain guiding, 88
geometric coupling efficiency, 50

H
half-wave plate, 87
hemispherical resonator, 8
hermetically sealed packages, 16
homogeneously broadened, 87

I
InGaAs laser diodes, 75, 77
intracavity SHG, 35, 85, 86
ion lasers, 4

K
krypton ion lasers, 80
KTP, 86

L
laser, defined, 4, 7
laser diode array, 2D, 17
laser diode array, bar, 17
laser diode arrays, 16
laser diode arrays, duty factor, 15
laser diode arrays, fiber-coupled, 20, 60, 64
laser diode arrays, heat removal, 59
laser diode arrays, packing density, 59
laser diode arrays, spectral bandwidth, 65
laser diode beam, spatial properties, 17
laser diode cost, effect of dopant lifetime, 77
laser diode stripe, 14
laser diodes, AlGaAs, 13
laser diodes, astigmatism, 17
laser diodes, bandwidth, 6, 33
laser diodes, beam divergence, 17
laser diodes, beam spatial properties, 17
laser diodes, cooling, 5, 32
laser diodes, cost, 5
laser diodes, cost per watt, 5
laser diodes, current tuning, 34
laser diodes, divergence, 37
laser diodes, facet damage, 58
laser diodes, facet reflectivity, 14
laser diodes, fiber-coupled, 19
laser diodes, gain-guided, 14
laser diodes, heterojunction, 13
laser diodes, index-guided, 15
laser diodes, injection-locked, 33
laser diodes, lifetimes, 4
laser diodes, limitation to stripe width, 58
laser diodes, qcw operation, 15
laser diodes, single-mode, 15, 33
laser diodes, stripe width, 15
laser diodes, temperature tuning, 15, 32, 52
laser diodes, wide-stripe, 17
laser host crystals, 29
laser host crystals, properties for diode pumping, 29
laser quantum efficiency, 50
laser resonator transverse modes, 9
laser resonators, 8
laser threshold, 47
LD 700, 80
LEDs, 14
lens ducts, 21
light ducts, 21
linear polarizer, 87
longitudinal modes, 12

M
microchannel cooling, 59
microchip laser, 88
MOCVD, 16
mode waist, 10
modes, 8
multimode operation, 12
Nd:YAG, 30
Nd:YAG, absorption length, 31
Nd:YAG, defined, 7
Nd:YAG 946-nm transition, end pumping, 73
Nd:YAG 946-nm transition, side pumping, 73
Nd:YAG laser, 1.3-µm transition, 71
Nd:YAG laser, 946-nm transition, 72
Nd:YAG laser, sensitivity to diode wavelength, 52, 79
Nd:YAG laser, threshold, 35
Nd:YALO, 72
Nd:YLF, 31
Nd:YVO₄, 31
Nd:YVO₄ laser, 69, 70
Nd-Fe-B magnet, 87
nearly hemispherical resonator, 8, 11
nodes, 86, 87
numerical aperture, 18

optical amplifier, 8
optical cavity, 8
optical excitation, 4
optical fibers, 18
optical fibers, multimode, 19
optical fibers, numerical aperture, 18
optical pumping, guidelines, 27
optical resonator, 8
optimum mirror transmission, 52
optimum output coupling, 48

Peltier coolers, 59
penta-prism laser, 62
periodically poled lithium niobate (PPLN), 85
phased arrays, 16
polarization beam splitter cubes, 42
polarization dependence of absorption coefficient, 78
population inversion, 7
power scaling, 57
power scaling, thermal effects, 60
Poynting vector walk-off, 86
pump optics, astigmatism correction, 38
pump optics, collimating lens, 37
pump optics, focusing lens, 39
pump optics, lens coatings, 38
pump optics, numerical aperture, 37
pump optics, polarization combination of laser diodes, 41
pump optics, working distance, 37

Q-switched operation, 83
quarter-wave plate, 86

relaxation frequency, 45
relay optics, 43
repetitive Q-switching, 83
resonator, 7
resonator length, 34
resonator length, Q-switched operation, 35
resonator length, second harmonic generation, 35
resonator loss, 45, 50
resonator modes, 8
rhodamine 700, 80
ring laser, 63, 87

saturation fluence, 46
second waist, 86
self-doubling crystals, 29
side pumping, 12, 67
side pumping, advantages, 28
side pumping, disadvantages, 28
side pumping, thermal effects, 67
single longitudinal mode, 13
single-longitudinal-mode (SLM) lasers, 86
single-stripe diodes, 14
small signal gain, 46
spatial hole burning, 86
spot sizes, 10, 11
stable resonator, 8
standing waves, 86, 87
stoichiometric crystals, 29
Stokes efficiency, 50
symmetric confocal resonator, 9, 11

wall plug efficiency, 49
wire bonded, 16

Y
YALO, 29
Yb:FAP, 77
Yb-doped lasers, 77
YLF, natural birefringence, 31
YVO₄, thermal lens, 31

Z
zig-zag slab laser, 68

T
TEM mode, defined, 10
TEM₀₀ mode, 10, 12
thermal birefringence, 61, 86
thermal fracture, 61
thermal gradients, 61
thermal lensing, 60
thermally sensitive waveplates, 86
thermoelectric cooler, 16
Ti:sapphire laser, 78
tightly folded resonator (TFR), 68
transfer efficiency, 51
transverse modes, 9
traveling wave, 87
twin-lobed far-field pattern, 16

U
unidirectional oscillation, 87
unstable resonator, 8
upper laser level population,
temporal dependence, 84

V
vanadate, 31
Verdet coefficient, 87
visible laser diodes, 75

W
wafer, 16
Richard Scheps has been developing diode-pumped lasers since 1986. He has published extensively in this field and was the first to demonstrate diode pumping in various gain media, including Cr:LiCAF, Cr,Nd:GSGG, and rhodamine 700 (LD700). He has served as Editor of the *IEEE Journal of Selected Topics in Quantum Electronics* and as an Associate Editor of *Photonics Technology Letters*. He is currently Associate Editor of the *IEEE Journal of Quantum Electronics* and Editor of *Progress in Quantum Electronics*. He holds more than 20 patents in the field of lasers and electro-optics.

About the Author

Richard Scheps has been developing diode-pumped lasers since 1986. He has published extensively in this field and was the first to demonstrate diode pumping in various gain media, including Cr:LiCAF, Cr,Nd:GSGG, and rhodamine 700 (LD700). He has served as Editor of the *IEEE Journal of Selected Topics in Quantum Electronics* and as an Associate Editor of *Photonics Technology Letters*. He is currently Associate Editor of the *IEEE Journal of Quantum Electronics* and Editor of *Progress in Quantum Electronics*. He holds more than 20 patents in the field of lasers and electro-optics.