Low-Level Light Therapy: Photobiomodulation
Tutorial Texts Series

- Powering Laser Diode Systems, Grigoriy A. Trestman, Vol. TT112
- Optics Using MATLAB®, Scott W. Teare, Vol. TT111
- Plasmonic Optics: Theory and Applications, Yongqian Li, Vol. TT110
- Design and Fabrication of Diffractive Optical Elements with MATLAB®, A. Vijayakumar and Shanti Bhattacharyya, Vol. TT109
- Energy Harvesting for Low-Power Autonomous Devices and Systems, Jahangir Rastegar and Harbans S. Dhadwal, Vol. TT108
- Practical Electronics for Optical Design and Engineering, Scott W. Teare, Vol. TT107
- Design Technology Co-optimization in the Era of Sub-resolution IC Scaling, Lars W. Liebmann, Kaushik Vaidyanathan, and Lawrence Pileggi, Vol. TT104
- Special Functions for Optical Science and Engineering, Vasudevan Lakshminarayanan and L. Srinivasa Varadharajan, Vol. TT103
- Discrimination of Subsurface Unexploded Ordnance, Kevin A. O’Neill, Vol. TT102
- Introduction to Metrology Applications in IC Manufacturing, Bo Su, Eric Solecky, and Alok Vaid, Vol. TT101
- Introduction to Liquid Crystals for Optical Design and Engineering, Sergio Restaino and Scott Teare, Vol. TT100
- Design and Implementation of Autostereoscopic Displays, Byoungho Lee, Soon-gi Park, Keehoon Hong, and Jisoo Hong, Vol. TT99
- Ocean Sensing and Monitoring: Optics and Other Methods, Weilin Hou, Vol. TT98
- Interferometry for Precision Measurement, Peter Langenbeck, Vol. TT94
- Modeling the Imaging Chain of Digital Cameras, Robert D. Fiete, Vol. TT92
- Bioluminescence and Fluorescence for In Vivo Imaging, Lubov Brovko, Vol. TT91
- Polarization of Light with Applications in Optical Fibers, Arun Kumar and Ajoy Ghatak, Vol. TT90
- Digital Fourier Optics: A MATLAB Tutorial, David G. Voeltz, Vol. TT89
- Optical Design of Microscopes, George Seward, Vol. TT88
- Nanotechnology: A Crash Course, Raúl J. Martin-Palma and Akhlesh Lakhtakia, Vol. TT86
- Direct Detection LADAR Systems, Richard Richmond and Stephen Cain, Vol. TT85
- Optical Design: Applying the Fundamentals, Max J. Riedl, Vol. TT84
- Fundamentals of Polarimetric Remote Sensing, John Schott, Vol. TT81
- The Design of Plastic Optical Systems, Michael P. Schaub, Vol. TT80
- Fundamentals of Photonics, Chandra Roychoudhuri, Vol. TT79
- Matrix Methods for Optical Layout, Gerhard Kloos, Vol. TT77
- Fundamentals of Infrared Detector Materials, Michael A. Kinch, Vol. TT76
- Bioluminescence for Food and Environmental Microbiological Safety, Lubov Brovko, Vol. TT74
- Introduction to Image Stabilization, Scott W. Teare and Sergio R. Restaino, Vol. TT73

(For a complete list of Tutorial Texts, see http://spie.org/publications/books/tutorial-texts.)
Low-Level Light Therapy: Photobiomodulation

Michael R. Hamblin
Cleber Ferraresi
Ying-Ying Huang
Lucas Freitas de Freitas
James D. Carroll

Tutorial Texts in Optical Engineering
Volume TT115

SPIE PRESS
Bellingham, Washington USA
Introduction to the Series

Since its inception in 1989, the Tutorial Texts (TT) series has grown to cover many diverse fields of science and engineering. The initial idea for the series was to make material presented in SPIE short courses available to those who could not attend and to provide a reference text for those who could. Thus, many of the texts in this series are generated by augmenting course notes with descriptive text that further illuminates the subject. In this way, the TT becomes an excellent stand-alone reference that finds a much wider audience than only short course attendees.

Tutorial Texts have grown in popularity and in the scope of material covered since 1989. They no longer necessarily stem from short courses; rather, they are often generated independently by experts in the field. They are popular because they provide a ready reference to those wishing to learn about emerging technologies or the latest information within their field. The topics within the series have grown from the initial areas of geometrical optics, optical detectors, and image processing to include the emerging fields of nanotechnology, biomedical optics, fiber optics, and laser technologies. Authors contributing to the TT series are instructed to provide introductory material so that those new to the field may use the book as a starting point to get a basic grasp of the material. It is hoped that some readers may develop sufficient interest to take a short course by the author or pursue further research in more advanced books to delve deeper into the subject.

The books in this series are distinguished from other technical monographs and textbooks in the way in which the material is presented. In keeping with the tutorial nature of the series, there is an emphasis on the use of graphical and illustrative material to better elucidate basic and advanced concepts. There is also heavy use of tabular reference data and numerous examples to further explain the concepts presented. The publishing time for the books is kept to a minimum so that the books will be as timely and up-to-date as possible. Furthermore, these introductory books are competitively priced compared to more traditional books on the same subject.

When a proposal for a text is received, each proposal is evaluated to determine the relevance of the proposed topic. This initial reviewing process has been very helpful to authors in identifying, early in the writing process, the need for additional material or other changes in approach that would serve to strengthen the text. Once a manuscript is completed, it is peer reviewed to ensure that chapters communicate accurately the essential ingredients of the science and technologies under discussion.

It is my goal to maintain the style and quality of books in the series and to further expand the topic areas to include new emerging fields as they become of interest to our reading audience.

James A. Harrington
Rutgers University
Contents

Preface xv
List of Contributors xvii

1 Introduction 1
 1.1 General 1
 1.2 Light Sources 3
 1.3 Physics and Tissue Optics 5
 1.4 Irradiation Parameters 7
 1.5 Penetration Depth 9
 1.6 Research in PBM/LLLT 12
 1.7 Present Status 13
 1.8 Clinical and Biomedical Applications of PBM 14
References 17

2 History of LLLT and Photobiomodulation 21
 2.1 History of Photomedicine 21
 2.2 Development of the Laser 25
 2.3 Discovery of Photobiomodulation 31
References 33

3 Molecular Mechanisms of LLLT 37
 3.1 Chromophores 37
 3.1.1 Cytochrome c oxidase 37
 3.1.2 Retrograde mitochondrial signaling 37
 3.1.3 Light-sensitive ion channels 38
 3.1.4 Direct cell-free light-mediated effects on molecules 40
 3.2 Signaling Molecules 40
 3.2.1 Adenosine triphosphate 40
 3.2.2 Cyclic AMP 41
 3.2.3 Reactive oxygen species 41
 3.2.4 Calcium 42
 3.2.5 Nitric oxide 42
 3.3 Activation of Transcription Factors 42
 3.3.1 Nuclear factor kappa B 42
14.2 *in vitro* Studies with Tendon Cells 196
14.3 Achilles Tendon Injury in Animal Models 197
 14.3.1 Achilles tendon healing in diabetic rats 200
14.4 Tendon Healing in Clinical Trials 201
References 202

15 Dermatology and Aesthetic Medicine Applications 205
15.1 Effects of LLLT on Skin 205
 15.1.1 Skin rejuvenation 205
 15.1.2 Acne 209
 15.1.3 Herpes virus infections 210
 15.1.4 Vitiligo 212
 15.1.5 Pigmented lesions 213
 15.1.6 Hypertrophic scars and keloids 214
 15.1.7 Burns 215
 15.1.8 Psoriasis 216
15.2 LLLT for Treatment of Hair Loss 218
 15.2.1 Hair and types of hair loss 218
 15.2.2 Existing treatments 220
 15.2.3 Androgenetic alopecia 222
 15.2.4 Alopecia areata 224
 15.2.5 Chemotherapy-induced alopecia 224
15.3 LLLT for Fat Reduction and Cellulite Treatment 225
 15.3.1 Lipoplasty and liposuction 225
 15.3.2 Fat reduction and cellulite treatment 225
 15.3.3 Combination treatments including LLLT 226
 15.3.4 LLLT for treating cellulite 227
15.4 Conclusion 228
References 228
Bibliography 241

16 Dental Applications 243
16.1 Musculoskeletal Pain: Temporal Mandibular Joint Disorder 243
16.2 Neuropathic Pain 244
16.3 Post-extraction Pain, Swelling, and Trismus 245
16.4 Nerve Injuries 245
16.5 Orthodontic Pain 246
16.6 Orthodontic Tooth Movement 246
16.7 Dentine Hypersensitivity 247
16.8 Herpes Simplex Infection 247
16.9 Cancer Therapy Side Effects 248
16.10 Post-operative Wound Healing 248
16.11 Endodontics 248
16.12 Analgesia 249
20 Future Directions and the Path Forward

20.1 Disappointment at Current Lack of Progress

20.2 New Indications
 20.2.1 Stem cells
 20.2.2 Transcranial LLLT for brain disorders
 20.2.3 Ophthalmology
 20.2.4 Autoimmune diseases
 20.2.5 Lung disease
 20.2.6 Performance enhancement

20.3 New Light Sources
 20.3.1 Wearable LLLT devices: bandages and clothing
 20.3.2 Implantable LEDs for brain and spine
 20.3.3 Swallowable battery-powered LED capsule for GI diseases

20.4 Marketing Hype

20.5 Negative Publication Bias

20.6 The Path Forward

References

Appendix: Review of LLLT Applications

Index
Preface

For almost 50 years, the medical therapy formerly known as “low-level laser therapy” and now known as “photobiomodulation” has had a somewhat checkered history. This approach has been promoted by some of its aficionados with almost missionary zeal, while doubters and skeptics have regarded it as “junk science” and “alternative and complementary medicine.” This Tutorial Text intends to convey to the contemporary scientific reader that photobiomodulation is becoming increasingly well-founded based on the accepted principles of photochemistry, cellular and molecular biology, and physiology.

The text covers in some detail the basic mechanisms of action of photobiomodulation at the cellular and molecular level because we have found that by far the question posed most often by scientists outside the field is “How does it really work?” The well-known biphasic dose response is covered because we believe that failure to take account of this phenomenon contributes to many of the negative studies that have been published. The ability of photobiomodulation to be used as a pre-conditioning regimen before some medical or surgical procedure or for performance enhancement is intriguing.

This Tutorial Text (larger than most) includes original and previously published material. The majority of the book focuses on a critical analysis of the various diseases and disorders of different human and animal tissue and organ systems that can be beneficially treated by photobiomodulation therapy. Chapters cover well-established applications in muscles and orthopedic conditions (bone, tendon, cartilage). Applications of photobiomodulation in dentistry have historically been important because dentists are accustomed to using lasers and light sources in their clinical practice. In addition to the foregoing, more systemic disorders are addressed, such as stem cells, lymph flow and edema, and laser irradiation of blood. One of the most important growing areas of medical application is photobiomodulation to the brain. Many common disorders—such as stroke, traumatic brain injury,
psychiatric diseases, and dementia—may all benefit. Finally, one of the commercially successful areas of photobiomodulation involves its applications to aesthetic medicine, including skin appearance, hair regrowth, and fat removal.

Michael R. Hamblin
Cleber Ferraresi
Ying-Ying Huang
Lucas Freitas de Freitas
James D. Carroll
January 2018
List of Contributors

James D. Carroll
THOR Photomedicine Ltd.

Eduardo Machado de Carvalho
Center for Lasers and Applications, IPEN-CNEN/SP, Campinas, São Paulo, Brazil

Roberta Chow
Brain and Mind Centre, The University of Sydney, Camperdown, NSW, Australia

Tingting Dong
Wellman Center for Photomedicine, Massachusetts General Hospital

Asheesh Gupta
Defence Institute of Physiology and Allied Sciences (DIPAS), DRDO, Delhi, India

Cleber Ferraresi
Universidade do Sagrado Coração, Brazil

Leila Soares Ferreira
Center for Lasers and Applications, IPEN-CNEN/SP, Campinas, São Paulo, Brazil

Fernanda Freire
Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, UNESP - Universidade Estadual Paulista, São José dos Campos, Brazil

Lucas Freitas de Freitas
University of São Paulo, Brazil

Michael R. Hamblin
Wellman Center for Photomedicine, Massachusetts General Hospital

Harvard Medical School

Ying-Ying Huang
Wellman Center for Photomedicine, Massachusetts General Hospital

Daiane Thais Meneguzzo
Center for Lasers and Applications, IPEN-CNEN/SP, Campinas, São Paulo, Brazil

Cássia Fukuda Nakashima
Center for Lasers and Applications, IPEN-CNEN/SP, Campinas, São Paulo, Brazil

Qi Zhang
Wellman Center for Photomedicine, Massachusetts General Hospital

Chang Zhou
Wellman Center for Photomedicine, Massachusetts General Hospital