FREQUENCY-DOMAIN ANALYSIS WITH DFTs
FREQUENCY-DOMAIN ANALYSIS WITH DFTs

Gary B. Hughes

SPIE PRESS
Bellingham, Washington USA
Contents

*Preface vii

1 Introduction 1
 1.1 Time-Varying Signals 1
 1.2 The Frequency Domain 4

2 Preliminary Background for the Fourier Analysis of Mathematical Functions 9
 2.1 Fourier’s Theorem 10
 2.2 Conditions of Fourier’s Theorem 11
 2.3 A Review of General Sinusoid Features 12
 2.4 Building Periodic Functions from Restricted-Domain-Function Snippets 15
 2.5 Frequencies of Fourier Series Terms 17
 2.6 Sum of Sinusoids with the Same Frequency 18
 2.7 Determining Rectangular (Real) Fourier Series Terms 20
 2.8 Euler’s Formula and the Circular Form of Fourier’s Theorem 24
 2.9 Determining Circular (Complex) Fourier Series Terms 27
 2.10 Interpreting Circular Fourier Components for Real-Valued Functions 31
 2.11 The Fourier Transform and Its Relationship to Fourier Series Expansions 33

3 Fourier Transforms for Discretely Sampled Data 39
 3.1 Discrete Sampling of Continuous Signals 39
 3.2 Discrete Fourier Transform 42
 3.3 Fast Fourier Transform 46
 3.4 Periodogram with Peak-Amplitude Normalization 49
 3.5 Signal Reconstruction from DFT Sinusoidal Components 56
3.6 MATLAB Source Code: DFT Amplitude Spectral Density 59
3.7 Notes on Validation and Verification of the MATLAB Source Code 68

4 Pre-Processing and Other Tricks of the DFT Trade 79
4.1 Mean Subtraction and Signal De-trending 79
4.2 Data Padding and Interpolation for FFTs 83
4.3 Nyquist Limits, Aliasing, and Oversampling 88
4.4 Power Leakage and Window Functions 91
4.5 MATLAB Source Code: Data Windows 97
4.6 Narrow Windows and Exploring Changes in Frequency Content through Time 100
4.7 MATLAB Source Code: Frequency Content through Time 104
4.8 DFT Spectrum Variability and Overlapping Data Segments 107
4.9 MATLAB Source Code: Overlapping Data Segments 110
4.10 Sensor Integration Time Effects 124
4.11 Phase, Cross-Spectra, and Coherence 130
4.12 MATLAB Source Code: Phase and Coherence 137

5 Signal Analysis Applications 149
5.1 Filters in the DFT Frequency Domain 149
5.2 Characterizing, Modeling, and Synthesizing Noise 160
5.3 Accelerometers and Random Vibration Testing 172
5.4 Spectral Analysis and Causal Relationships in Correlated Signals 184
5.5 Some Remarks about DFT Frequency-Domain Analysis 198

Appendix: MATLAB Source Code: Validation and Verification 201

Index 217
Preface

Fourier transforms provide a mechanism for translating suitable mathematical functions between the time domain and the frequency domain. Many excellent references describe the theoretical basis for using Fourier transforms to analyze the frequency content of mathematical functions. Fourier transforms have also been adapted for applied scenarios, such as estimating the frequency content of discretely sampled signals. Procedures for discrete frequency-domain analysis using Fourier methods are, however, laden with subtle foibles. Many of the quirks that are unique to the analysis of discretely sampled signals elude the insight of the typical, rigorous Fourier development that is so elegantly valuable for analyzing mathematical functions. In my experience, many mathematically oriented references leave the details of practical implementation for readers to discover on their own. The main objective of this book is to provide a practical guide for the implementation of Fourier transform methods to perform frequency-domain analysis of discretely sampled time-series signals.

The topic of frequency-domain analysis is initially motivated by presenting a basic example: examining the frequency content of a synthetic line voltage that is created by summing the sinusoidal signals and a noise component. The composite sum is displayed as a time-series signal, where the sinusoidal components are not necessarily easy to identify in the time domain. A discrete Fourier transform (DFT) peak-amplitude spectral density profile (periodogram) of the composite signal is presented that shows how the sinusoidal contributions are explicitly revealed in the frequency domain.

Creating and interpreting the DFT periodogram requires specific knowledge of Fourier transform theory, combined with techniques that are tailored for discretely sampled signals. Salient mathematical
concepts that are pertinent to Fourier analysis are explored, with the aim of providing enough theory to fully understand and interpret the Fourier frequency spectra of mathematical functions. The theory is followed by precise explanations of essential practical concepts that are required for analyzing discretely sampled time-series signals using Fourier transform methods. A discussion of common DFT pre-processing techniques, such as de-trending, data padding, data windowing, and remedies for certain discretization issues, is presented. MATLAB® source code is provided that implements all of the ideas discussed in the text. (MATLAB® is a registered trademark of The Mathworks, Inc.) Some validation and verification activities for the source code are explored. The source code is then put to good use in several applied examples that illustrate some of the potent capabilities of DFT frequency-domain analysis. The code can be downloaded at http://spie.org/Samples/Pressbook_Supplemental/PM282_sup.zip

Gary B. Hughes
November 2017