References

17. Ibid reference 16.

References

42. Ibid reference 41.
47. Ibid reference 46.
57. Ibid reference 56.
Index

A
allocations, 21
analytical hierarchy process (AHP), 71, 81

B
best estimate (BE), 22
Bienayme–Chebyshev inequality, 44, 45
budget management, 21

C
central limit theorem (CLT), 36, 38
Chebychev inequality, 36
chord fold, 89
COBE DIRBE, 61
communication, 127
concept maturity level (CML), 8
context diagrams, 13

D
Deep Space Network (DSN), 78
departure asymptote declination (DAD), 73
design reference mission (DRM), 51–54
doctrine of successive refinement, 9

E
Eastern Test Range (ETR), 75
demali, 129
end-to-end performance modeling, 69
environmental entities, 15
estimated performance, 21

F
field of regard, 65
fine steering mirror (FSM), 104

G
gap analysis, 47

H
hexikes, 22
hyperbolic excess velocity, 73

I
inner working angle (IWA), 115, 116
integral field spectrograph (IFS), 68
integrated telescope model (ITM), 107, 108
International Council on Systems Engineering (INCOSE), 1

J
James Webb Space Telescope (JWST), 22, 58, 90

K
key decision points (KDPs), 7
Kuiper Belt, 66, 73

L
lifecycle of a mission, 7
M
mechanical refrigerator, 87
modeling uncertainty factor (MUF), 22, 24
Monte Carlo simulation, 22, 38, 39

N
N^2 diagram, 15
N^2 view, 4
not-to-exceed (NTE) requirement, 21

O
operational view, 9
optical quality, 19
orbit simulation, 59

P
performance budget, 29
performance tree, 30, 40
physical analysis group (PAG), 47
predicted performance, 21
primary mirror deployment, 88
probability distribution function (PDF), 22, 31, 41, 42
probability of success, 35

R
radial fold, 89
radiometric quality, 19
radius of curvature (RoC), 96
reaction level, 21
requirements, 21
reserve, 40
risk management, 56, 57

S
scientific instrument module (SIM), 92
sensitivity, 49, 50
sharpness function, 59
signal-to-noise ratio (SNR), 50, 59
Spot of Arago, 118, 119
stacked segments, 89
starshade, 113, 119
Strehl ratio, 101
subjective value method, 70
surface figure error (SFE), 22
system verification, 107
systems engineering, 1
systems of systems engineering, 141
systems view, 9

T
technical-standards view, 9
technology readiness level (TRL), 55
thermal IR stray light, 67
time to complete (TtC), 79

U
U.S. Department of Defense Architecture Framework (DODAF), 9
utility function method, 71

V
V diagram, 10
verbal skills, 130
Very Large Telescope (VLT), 88
Vysochanskij–Petunin (V-P) inequality, 36

W
wavefront sensing and control (WFSC), 96
Western Test Range (WTR), 74

Z
Zernike polynomials, 22
zodiacal background, 52, 66
zodiacal dust, 59
Paul A. Lightsey has more than 50 years’ experience in Physics, Mathematics, and Engineering, much of which has been in the area of optical systems analysis and design. He is currently the Chief Engineer for the James Webb Space Telescope program at Ball and a member of the NASA Mission Systems Engineering Optical Leads for Webb. He has contributed to all phases of development, from new business through design, fabrication, alignment, test, calibration, and on-orbit operations while at Ball. He has extensive experience working on Hubble Space Telescope (HST) instruments. He was the Systems Engineer for the Near-Infrared Camera and Multi-Object Spectrometer (NICMOS), which was installed with its sister instrument, the Space Telescope Imaging Spectrograph (STIS), in February 1997. He developed a system optical performance model for the design analysis of COSTAR, the corrective optics for the HST. COSTAR was installed aboard the HST in December 1993. This model includes modeling of structural dynamics and thermal effects on the imaging performance and was also used for the design of NICMOS and STIS. Lightsey was involved in analyses and field experiments for the Retroreflector Assisted Imaging Laser Experiment (RAILE) and the Relay Mirror Experiment (RME). These activities included simulation and analysis of atmospheric propagation of laser beams, optical pointing and tracking systems, and imaging performance assessment. He has collaborated on the design and construction of an airborne coherent Doppler lidar for atmospheric remote sensing and on studies for a coherent differential Doppler technique for air motion sensing from aircraft. Other activities included spectrophotometric measurements of stratospheric ozone, quaternion formulation for spacecraft rotation, stability analysis of gymnastics rotations, and low-temperature measurements of electronic transport and magnetic resonance properties in materials exhibiting metal–insulator transitions. Before coming to Ball, Lightsey was a professor of Physics and Mathematics for 14 years. He has an eclectic publication record that includes articles in such diverse journals as Physical Review, American Journal of Physics, Journal of the International Society of Sports Mechanics, American Meteorological Society, Optical Engineering, Astronomical Society of the Pacific Proceedings, SPIE Proceedings, and Runner’s World. He has taught in the Johns Hopkins University Masters of Science in Systems Engineering program; a systems engineering short course for SPIE; and systems engineering courses internal to Ball. Lightsey received his B.S. in Physics with High Distinction from Colorado State University in 1966, and his Ph.D. in Physics from Cornell University in 1972. In 2003, he received the William H. Follett, Jr. Award for Excellence in System Engineering, and in 2007 he received the Distinguished Public Service Medal, the highest award given by NASA to individuals not employed by NASA. He is a Senior Member of OSA and an SPIE Fellow.
Jonathan W. Arenberg has over 35 years of experience in the application of physics, mathematics, and engineering, with most of this effort focused on astronomical and high-energy laser systems. He is currently the Chief Engineer for Space Science Missions at Northrop Grumman Aerospace Systems (NGAS). He held a long tenure on the James Webb Space Telescope program at NG, starting with technology development, systems engineering, design integration, and finally as Northrop’s Chief Engineer for James Webb.

He began his career in 1982 at Hughes Aircraft Company, working on tactical lasers, night vision, and other sensor systems. It was at Hughes Aircraft where he was first introduced to the problem of laser damage and its measurement and quantification. In 1989, Arenberg left Hughes Aircraft for TRW (now NGAS) and was supposed to be assigned to a laser program. Upon his arrival at TRW, this laser program has not started, and he was assigned temporarily to the Advanced X-ray Astrophysics Facility (now the Chandra X-ray Observatory) for a few weeks as the other contract was put in place. During his almost nine-year tenure on Chandra, Arenberg worked on many aspects of the mission, x-ray calibration and test equipment, alignment requirements, stay light, baffles, magnetic broom and the aspect-determination system.

Following Chandra, Arenberg worked on a number of high-energy chemical and solid state laser programs, including the Space-Based Laser program, where he was the resonator and diagnostics lead, and the Airborne Laser, where he contributed to the development of the alignment units that allow for resonator alignment in a flying flexible aircraft. He returned to space science to work on business and concept development on TRW’s concepts for TPF-C, Constellation-X, SAFIR, and the starshade, among other missions. His other work experience includes other optical and space systems, as well as a wide variety of technology development. He is a member of the US National and International (ISO) committees charged with writing standards for laser and electro-optical systems and components, and is the project leader for the revision of the standard for the measurement of laser-induced damage.

Arenberg has authored over 170 conference presentations, refereed papers, book chapters, and professional short courses, and he holds a dozen European and US patents in a wide range of technologies. He is on the planning committee for several conferences and is a journal referee. He teaches a systems engineering short course for SPIE, which is the basis of this book, and courses internal to NGAS. He received his B.S. in Physics from the University of California, Los Angeles in 1983, where he was a Regents Scholar and the Edward A. Dickson alumni scholar. He received his M.S. and Ph.D. in Engineering on a Howard Hughes fellowship from the same school in 1985 and 1987, respectively. In 1991, along with other colleagues he received the...
TRW Chairman’s Award for the development of optics for the AXAF (now Chandra) telescope. He is the recipient of seven group achievement awards from NASA for his work on Chandra and Webb. He is a member of the American Association for the Advancement of Science and Sigma Xi, and he is an SPIE Fellow.