Today, brilliant images are possible with the smallest smartphone lenses. Why then is it still necessary to have large lenses in photography?

SIZE COMPARISON

(original sizes)

SMARTPHONE LENS

SLR LENs
Today, brilliant images are possible with the smallest smartphone lenses. Why then is it still necessary to have large lenses in photography? Despite their small size, smartphone lenses have sophisticated optics with complex lens arrangements. The most important consequence of the size difference is the different depths of field.

Smartphone Lens
Smartphones display all objects from near to far with the same sharpness.

SLR Lens
The depth of field can be set selectively with large SLR lenses.
Optical systems can capture and interpret hand movements contactlessly – this is ideal in sterile workplaces such as hospital operating rooms.

SURGICAL HAND-TRACKING SYSTEM

detailed view from below

Two infrared (IR) cameras capture the scene like two human eyes from slightly shifted perspectives. A 3D camera, which is based on the propagation time of light, verifies the distance.
FLAT SCREENS

In contrast to early cathode ray tubes, flat screens save a great deal of energy per unit area. Impressive global production capacities meet the high demand for these displays.

ELECTRICITY CONSUMPTION AT SAME DISPLAY SIZE

- **100%**: Cathode ray tube
- **25%**: LCD

PRODUCTION OF FLATScreens WITHIN ONE HOUR

- **200,000** smartphone displays
- **2** football fields

Total area of produced flat screens (TVs, tablets, smartphones, and others)
LCD vs OLED

Today, LCD displays dominate the flatscreen market, but in smartphones, organic LEDs (OLEDs) are conquering an increasingly larger market share. OLED displays are thinner, more energy-efficient, and higher in contrast but more expensive to produce.

LCD DISPLAY STRUCTURE

Today’s most common type of display creates images by blocking off or letting through white light that LEDs create across the back of the display.
Today, LCD displays dominate the flatscreen market, but in smartphones, organic LEDs (OLEDs) are conquering an increasingly larger market share. OLED displays are thinner, more energy-efficient, and higher in contrast but more expensive to produce.

OLED DISPLAY STRUCTURE

Organically luminous materials in OLED displays do not require a separate light source, which makes their construction depth much thinner.

OLED – Organic Light Emitting Diode

These layers together are around 200 times thinner than a human hair.

- **TFT** = thin-film transistors
- **carrier material** (glass or plastic)
- **organic layers**
 Molecules are electrically excited to make them glow.

LIGHT DIRECTION

display resolutions in pixels

<table>
<thead>
<tr>
<th>Resolution</th>
<th>Pixel Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>standard resolution</td>
<td>720 x 480</td>
</tr>
<tr>
<td>full HD</td>
<td>1920 x 1080</td>
</tr>
<tr>
<td>4K Ultra HD</td>
<td>3840 x 2160</td>
</tr>
<tr>
<td>8K Ultra HD</td>
<td>7680 x 4320</td>
</tr>
</tbody>
</table>