Bibliography

Pixel designs and HDR pixels

Software HDR methods, tone-mapping algorithms, and perception

Measurement and characterization methods

General HDR

General image sensors

Photography and optics

Miscellaneous

82. L. Straniero, see http://www.flickr.com/photos/24630856@N08 (last accessed July 2012).

84. C. Lofqvist, see page http://www.flickr.com/photos/43052603@N00 (last accessed July 2012).

Index

1/f noise, 34, 104
3T pixel, 57–59, 73–76, 81
4T pixel, 59, 60, 99

A
absolute radiance map, 122
airbag, 3
artifact, 33, 57, 58, 60, 70, 94, 135

B
barcode, 6
Bayer pattern, 114
beam splitter, 105

C
color channel, 114, 115, 126
color correction matrix, 155
color space, 114, 153–155
computer graphics, 120
correlated double sampling (CDS), 32–34
current-gain-amplifier, 104, 105

dynamic range enhancement factor (DRF), 85, 87
dynamic range gaps, 46, 47, 52
dynamic well adjustment, 82

E
EMVA1288 standard, 30, 35, 39, 123, 160, 161
Enz–Krummenacher–Vittoz (EKV) equation, 96
exposure value (EV), 92

F
fixed pattern noise (FPN), 33, 95
flare, 141, 142
flicker noise, 34
flickering, 148
full-well capacity, 100

gamma, 14, 32
gamut, 133, 154, 157
ghosting, 131, 141
ghosts, 131
glare, 141, 143, 144
global operators, 135
global shutter, 34, 61, 100

H
halo, 8, 135, 137
histogram, 12, 17, 18, 37, 52, 53
human vision system, 53, 54, 135

165
I	image information, 49, 52
	image lag, 29, 99, 100
	independent areas of integration (IAOI), 107
	integration time, 70, 71, 107
	International Organization for Standardization (ISO), 18, 43, 123, 159–162
	irradiance, 24, 38, 39, 44, 122, 123
J	Johnson noise, 34
K	kneepoint, 72, 83, 149
	kTC noise, 33, 99
L	lane departure warning (LDW), 136
	lateral overflow, 72, 82
	LinLog™ sensor, 104
	local operators, 106, 135
	logarithmic compression with feedback, 104
	logarithmic pixel, 96, 99
M	Malik, Jitendra, 123, 129
	Mann, Steve, 7
	metamerism, 53, 54, 115
	misalignments, 131
	multiple independent exposure window (MIEW), 107
	multiple segments, 71, 82, 83
	multiple slopes, 45, 65, 82
	multiple-exposure window, 106, 107
N	neutral density filter, 121, 163
O	optical effects, 33
P	park assist, 2
	pedestrian detection, 2, 5
	photo response non-uniformity (PRNU), 30, 31, 38, 41
	photoconversion layers, 104
	photocurrent, 36, 62, 65, 68–70, 74, 75
	photography, 6, 7, 18, 92, 121
	photon flux, 62
	photon shot noise, 24, 25, 36
	photovoltaic, 99
	Picard, Rosalind, 7, 129
	piecewise linear response (PWLR), 45, 47, 65, 90, 91
	pixel array, 30, 150, 151
	pixel clamping, 71
	pixel control, 56
	pixel design, 56, 74, 81, 109, 116
	pixel radiance, 122
	Poisson distribution, 22
	Poisson’s law, 22, 25
	power supply rejection ratio (PSRR), 33, 35, 81
	proportional-integral-derivative (PID) controller, 148
Q	quantization noise, 32, 35
	quantum efficiency, 26–29
R	radiance, 122
	radiance map, 7, 123, 126
	readout circuit, 29, 30, 38, 78
	reciprocity principle, 123
	relative radiance map, 122, 156
	reset noise, 33, 34, 84
	road sign detection, 5
	rolling shutter, 57, 59, 81, 139
S	S-curve, 32, 123
saturation, 39–43, 62, 65
saturation capacity, 65
scene radiance, 122
security, 4
shot-noise-adapted quantization, 113
shutter, 56, 57, 116
shutter time, 147
silver halide film, 123
skimming, 82
SNR holes, 46, 150
storage element, 56, 66–68

T
thermal noise, 34, 38
tone mapping, 8, 18, 121, 126, 133–135
traffic monitoring, 4
traffic sign recognition, 2
tunnel, 4, 106

V
vantage point, 121
veiling glare, 43, 143, 144

W
Wäny, Martin, 57
welding, 1
well sizing, 82
Arnaud Darmont (1979–2018) held a degree in Electronic Engineering from the University of Liège (Belgium, EU) oriented towards imaging science; he worked for over fifteen years in the field of imaging, HDR imaging, camera design, machine vision, and camera characterization. He authored several publications and patents in the field of HDR imaging, automotive on-board imaging, image processing applications, and camera test and characterization.

After almost 7 years developing automotive HDR CMOS image sensors at Melexis, he founded Aphesa in 2008. Aphesa specialized in image sensor consulting, HDR imaging, custom camera design, custom image processing solutions, image sensor and camera characterization and benchmarking. Aphesa was one of the main contributors to the European Machine Vision Association (EMVA) 1288 standard, and Darmont was a member of the EMVA 1288 working group since almost the beginning of the standard. Aphesa merged with Deltatec in 2017, and Darmont served as business development manager and technical expert.

Since December 2017, he was also the manager of standards at the EMVA, has launched new standards, and coordinated the international development of industrial imaging standards. He was a contributor to the IEEE P2020 automotive image quality standard and the IEEE P4001 hyperspectral imaging standard.

He was an SPIE instructor since 2009 and provided image sensor and industrial imaging courses to companies since 2015.