Appendix

Numerous software packages are available for evaluating thin-film systems. There are commercial and freeware software packages as well as online solvers that can be accessed through a web browser. The list provided here illustrates the number of options available to thin-film users and is not intended to be complete, nor an endorsement of their functionality or accuracy. Interested readers are encouraged to perform their own web search for thin-film calculators, as the list is always changing.

Commercial Thin-Film Software Packages
Thin Film Center: www.thinfilmcenter.com (Software: Essential Macleod)
OptiLayer: www.optilayer.com (Software: OptiLayer)
Software Spectra, Inc.: www.sspectra.com (Software: TFCalc™)
Goldstein’s “Winfilm”
FTG Software Associates: ftgsoftware.com (Software: FilmStar™)

Freeware Thin-Film Software Packages
École Polytechnique de Montréal, Functional Coating and Surface Engineering Laboratory: lardis.polymtl.ca (Software: OpenFilters)
University of Arizona: wp.optics.arizona.edu/milster (Software: OptiScan©)

Online Thin-Film Software Packages
Filmetrics, Inc.: www.filmetrics.com (Software: Reflectance Calculator)
Science Calculators: www.sciencecalculators.org (Software: Thin film calculator)
CalcTool: www.calctool.org (Software: Thin Film Optical Coating)

Online Data on Index of Refraction
Filmetrics: www.filmetrics.com
Bibliography


Teare, S. W., “Metals for induced transmission optical filters,” Presented at the Canadian Association of Physicists Meeting in Kingston, Canada, June 2017.


Index

A
absorption, 9
absorption coefficient, 34–35
absorption filters, 3–4
admittance, 51–52, 57
admittance diagram, 54–55, 59
angular tilts, 168
antireflection structures, 72
attenuation coefficient, 34

B
bandpass filters, 6, 9, 127
blocking filter structure, 78
Brewster’s angle, 15–16

C
central wavelength, 6, 8, 54, 59
characteristic matrix model, 28
complex index of refraction, 9, 34
composite transmission, 79
constructive interference, 24

destructive interference, 24
dichroic filters, 5
dielectric materials, 33
dispersion, 61, 101, 105, 108

E
electric permittivity, 52
electromagnetic spectrum, 13
electron-beam physical vapor deposition, 166
evanescent wave, 16
extinction coefficient, 9, 33–34

F
Fabry–Pérot filter, 8
Fresnel equations, 16, 17–18
Fresnel reflection amplitude coefficient, 18
full width at half maximum (FWHM), 134

G
gel filters, 3

H
Hooker telescope, 107

I
imaginary component, 54
impedance, 51–52
impedance matching, 9, 51
induced transmission, 9
induced-transmission filter, 96–98, 108, 119
interference filters, 5
ion-aided deposition, 166

K
k/n ratio, 111

L
Lantal glass, 150
lensmaker’s equations, 37
Index

M
magnetic permeability, 52
magnetron sputtering, 166
MATLAB®, 2, 10
maximum potential transmittance, 92, 141
monochrometer, 36
Mount Wilson Observatory, 107

N
Newton, Sir Isaac, 13
non–QWOT, 82

O
optical power measurements, 164

P
peak shape, 102–103
physical vapor deposition, 5
polarized light, 16
potential transmittance, 92

Q
quarter-wavelength optical thickness (QWOT), 6

R
reflectance amplitude coefficient, 18
reflection, 14
refraction, 14
refractive index, 33

S
silicon detector, 77
silicon photodiode, 152
Snell's law, 14
spectrophotometer, 36
spike, 77
spike filter structure, 77
sputter deposition, 166
stresses in thin films, 166
substrate, 5, 7–8

T
thickness monitoring, 164
total internal reflection, 16, 39
transferred power, 51
transmission bandpass filters, 71, 72
transmission profile, 8, 59, 163
transmittance amplitude coefficient, 18

V
visualization tools, 39

W
Wrattan filters, 3
Scott W. Teare is professor of Electrical Engineering at New Mexico Institute of Mining and Technology in Socorro, New Mexico, where he teaches undergraduate and graduate courses in electrical engineering and optics. He is an active researcher in the areas of optics, high-voltage interactions with energetic materials, and ballistics and physics-based modeling. He has authored or coauthored more than 100 technical papers, has published four previous books with SPIE Press, and was awarded four U.S. patents. He received his Ph.D. in Physics from the University of Guelph, Canada, and is a member of the Canadian Association of Physicists and the Royal Astronomical Society, a Senior Member of IEEE, and a Fellow of SPIE. He volunteers with ABET on the Board of Delegates representing SPIE, and is currently on the Fulbright Specialist Roster.