Index

A
accelerometer, 26
acoustic sensor, 27, 266, 268
acousto-optic modulator, 24, 30, 266
aether, 2
aircraft, 29
Allan deviation, 14
Allan variance, 171
amplified spontaneous emission (ASE), 8
amplified spontaneous emission, 149
angle error, 109
angle random walk (ARW), 48
attitude referencing, 99

B
backscatter, 30
backscattering noise, 161
beamsplitter, 31
bias error, 155
bias instability, 49
bias offset error, 48
bias stability, 115
biasing modulation amplitude, 162
biasing modulation–demodulation, 6
biasing modulation, 158
birefringence modulation, 159
Brillouin gain spectrum, 118
Brillouin optical time-domain analyzer (BOTDA), 11
broadband spontaneous-emission source, 8

capillary waves, 153
carrier suppression, 169, 172
closed loop, 21, 266
closed-loop scheme, 6
coherence collapse, 161
cohereence function, 9
coherent backscattering noise, 152, 163
cohereent backscattering, 155
common input–output port, 5

D
D-shaped cross-section, 43
deadbeat control filter, 102
depolarization length, 159
detector noise, 162
digital phase ramp, 6
dispersion, 24
distributed polarization extinction ratio (PER), 9
distributed scattering, 155
distributed strain, 118
DSP-1750, 53
DSP-1760, 55
DSP-3000, 53
dynamic biasing modulation, 173

E
E-Core fiber, 43
E-Core fiber:1000 and 50, 2000
eigenfrequency, 102
elliptical core, 39
erbium-doped fiber amplifier (EDFA), 8
extinction ratio, 157

F
Faraday effect, 12, 152
fiber crossover, 221
fiber optic gyro (FOG), 1
fiber optic gyroscope (FOG), 39, 42
fiber optic gyroscope (FOG): open-loop, 46
fiber trimming, 253
filters, 27
Fizeau’s experiment, 3
four-state modulation, 6
Fresnel–Fizeau drag effect, 3

G
Gaussian distribution, 156
Gaussian white noise (GWN), 154, 167
glass bobbin, 117
group birefringence, 224
guidance system, 261

H
hardware-in-the-loop (HITL), 102
HITL, 106, 108
hollow-core fiber (HCF), 153, 174
hollow-core micro-structured fiber, 12

I
IMU:1725, 57
IMU:1750, 56
IMU:1775, 56
inertial measurement unit (IMU), 42
inertial navigation system (INS), 42
inertial navigation system:
 GEO-FOG 3D, 58
inertial reference unit (IRU), 99
inertial systems, 39
insertion loss (IL), 219
integrated-optic channel waveguide, 14

K
Kerr constant, 175
Kerr effect, 152
Kerr phase error, 160
knife-edge near-field Fresnel diffraction, 17

L
launch vehicles, 35
level-wound coil, 46
license, 26
linewidth broadening, 161, 164
Lloyd mirror effect, 16
lock-in, 30

M
Mach–Zehnder, 268
magnetic dependence, 13
magneto-optic modulator, 31
McDonnell Douglas Astronautics Company (MDAC), 261
McDonnell Douglas, 266
mechanical gyros, 29, 261
Michelson interferometer, 268
minimum configuration, 31
Monte Carlo simulation, 104
multi-integrated optical circuit (MIOC), 102
multifunction integrated optic circuit (MIOC), 154
multiple function integrated optical chip (MIOC), 218

N
navigation accuracy, 99
navigation and control, 60
navigation-error equations, 103
noise spectrum, 156
noise, 266, 268
Index

O
 octapole winding, 115
 oil and gas industry, 26
 open-loop fiber optic gyro, 33
 optical circuit, 44
 optical coherence domain
 polarimetry (OCDP), 9
 optical coherence tomography
 (OCT), 216, 254
 optical coherence-domain
 polarimeter (OCDP), 222
 optical fiber, 42
 optical Kerr effect, 8
 optical spectrum analyzer
 (OSA), 9

P
 path-matched interferometry, 9
 phase error, 158
 phase noise, 155
 phase nulling, 24, 266
 photon noise, 14
 photonic crystal, 153
 piezoelectric (PZT) modulator, 47
 piezoelectric modulator, 31
 pointing error, 251
 polarization control, 268
 polarization coupling, 157–158
 polarization extinction ratio
 (PER), 219
 polarization rejection, 16
 polarization-maintaining (PM)
 fiber, 155
 polarizer, 31, 157
 positioning and imaging, 60
 proper frequency, 6
 proton-exchanged lithium niobate
 (LiNbO3) integrated-optic
 circuit, 9
 pseudo-random bit sequence
 (PRBS), 153, 166

Q
 quadrupolar winding, 11
 quadrupole winding method, 46
 quadrupole winding, 115

R
 random bit sequence (RBS), 166
 rate error, 109
 reciprocal configuration, 4
 relative intensity noise (RIN), 10,
 13, 149, 162
 relative intensity noise (RIN):
 reduction, 14
 remotely operated vehicles (ROVs),
 58
 ring laser gyro (RLG), 29, 32, 149
 rocket, 264
 rotation sensitivity, 162
 rovers, 34

S
 Sagnac distributed sensor, 28–29
 Sagnac interferometer, 47, 218
 Sagnac secure fiber optic
 communication, 29, 273
 Sagnac strain sensor, 27
 Sagnac–Laue effect, 2
 Sagnac’s experiment, 2
 sawtooth, 31
 scale factor, 6, 31, 99, 149
 self-heterodyne method, 161
 shock and vibration sensitivity, 49
 Shupe constant, 175
 Shupe effect, 11, 115, 152, 172, 218
 Shupe error, 119
 Shupe sensitivity, 115
 sinusoidal phase modulation, 164
 spacecraft, 29
 spatial resolution, 118
 special theory of relativity, 2
 stabilization and orientation, 61
static parameters, 220
strain attenuation, 117
strain distribution, 117
super-luminescent diode (SLD), 14
super-luminescent diode source (SLED), 224
superfluorescent fiber source (SFS), 149
symmetric coil, 120
symmetrical winding, 115

total internal reflection (TIR), 15
transient parameters, 220

U
unpolarized emission, 9
US Air Force (USAF), 267

V
Verdet constant, 176

W
white noise, 168
winding defects, 219
winding, 116

Y
Y-junction, 154