Index

α-β filter, 8, 163, 179–183

A
activation value, 46–47
active sensors, 15, 163
active transportation and demand management, 14, 68–69
acyclic graph, 128–129
adaptive online traffic control, 70
advanced driver assistance systems (ADAS), 3–4, 74, 130
advanced transportation management systems (ATMS), 3, 68
advanced traveler information systems (ATIS), 3–4, 72
algorithmic architecture, 22
antecedent clause, 45–47
association, 12, 27, 39–40, 47–49, 174
association measure, 37
automated vehicles, 1, 74–75
automatic incident detection (AID), 3–4, 69–70
automatic license-plate reader (ALPR), 2, 4, 6, 15, 72, 84, 204

B
basic probability assignment
probability mass, 7, 138, 157
benefits to traffic management applications, 11
bias errors, 49, 166–167
big data, 1, 15, 61, 212–214
Bluetooth®, 1, 6, 15, 62, 73–74, 204
Boolean algebra, 43, 45–46, 217

C
cancer screening application, 108–110
Cartesian coordinates, 165
causal Bayesian networks, 7, 99, 127, 130, 135
cell phone, 2, 4, 28, 72, 99, 117, 203–204, 212
center of mass, 47, 80
central limit theorem, 173
central processor, 20
central-level fusion, 82
central-level tracker, 50
central track file, 48, 50–51
chi-squared random variable, 174
classical inference, 32
cluster algorithms, 33, 37, 41–42, 76
collision avoidance systems (CAS), 4, 74
commercial operating systems, 201, 205, 212
commercial vehicle operations (CVO), 3
conceptual architecture, 22
conditional probability, 100–101, 106–107, 115, 123–124, 128, 215
conditionally independent classifiers, 123
conditionally independent sensors, 7, 113, 115, 117–119, 132, 135, 216
confidence, 139, 156
confidence interval, 112
confidence levels, 43–44, 215, 217, 219
conflicting beliefs, 33, 157
conflicting propositions, 33, 75, 157, 159
confusion matrix, 79, 124, 151
conjunction, 137
connected vehicles, 1, 2–3, 14–15, 57–58, 69, 72, 164, 202–204, 212, 214
consequent clause, 46–47
consequent fuzzy set, 46–47
constant-acceleration motion, 188–189
constant-acceleration motion
discrete-time state equation, 188
constant-acceleration object process noise model, 188–189
constant-jerk kinematic model, 189–190
constant-location kinematic model, 189
constant-velocity motion, 179, 186–187, 189
constant-velocity object process noise model, 186–187
contextual interpretation, 53
continuous-time state equation, 186, 188
control function, 164–165, 171–172, 194, 218
convergence, 37
corrected state error-covariance matrix, 196
corrected state estimate, 166, 169, 172–173, 176, 179, 196
correlation metrics, 33, 48–49
counterpropagation network, 37
crash analysis and prevention, 75–76
criticality assessment, 99, 127, 130–131, 133–134
cross-classification matrix, 79, 124
crowdsourcing, 6, 15, 61, 212, 214

D
data and track association, 27, 47–50, 209
data and track correlation, 27, 49
data association, 37, 47–51, 55, 60, 213
data classification, 43–44
data correlation, 12, 27, 48–49, 201
data definition, 5–6
data-driven systems, 47
data fusion algorithm selection, 51–52
data fusion algorithms, 2–3, 11, 26, 52, 81, 215–216
data fusion benefits to traffic management, 6, 13–14
data fusion caveat, 27
data fusion goal, 12–14, 219
data fusion issues, 219
data fusion research needs, 202–203, 214–215
data preprocessing, 26, 28, 82
data quality, 203–204, 214
data reliability, 203–204, 213
data-to-track association, 50–51
database management systems (DBMS), 8, 201, 203, 212–213
dead reckoning, 5, 8, 79, 178
decision-level fusion, 19, 82
decision logic, 112
decision rules, 43, 112, 137–138, 143–148
decision support system (DSS), 8, 64–65, 70, 153, 155, 159, 209
dedicated short-range communications (DSRC), 14, 62, 164, 202
defuzzification, 46, 69, 215, 218
Dempster–Shafer—Bayesian comparison, 155–157
Dempster’s rule, 7, 33, 73, 75, 137–138, 143–147, 154–155, 157–158
detection modes, 43–44, 217
detection probability, 43, 49, 209, 217
detection, classification, and identification definitions, 22–24
DFIG enhancements, 2, 6, 11, 24–26, 83
direct support for a proposition, 139–143, 158
directed acyclic graph, 129–130
directed path, 129–130
discrete-time state equation, 188
disjoint propositions, 156
disjunction, 132, 139
distributed sensor architectures, 19–21
duality of resource management and data fusion, 59–61
dubiosity, 140

e
estimation, 12, 163–164

event and activity aggregation, 53

F
fading-memory algorithm, 183
false-alarm probability, 43, 108–109, 217
feature vector, 37, 41, 44–46, 77, 206, 208
feature-based inference algorithms, 31
feedforward network, 33, 35, 38, 78
filter tuning, 185
filtering, 164, 196
filtering window, 183
fixed continuous-time system, 223 floating car, 6, 14, 25, 214 focal element, 139
focal subset, 140
frame of discernment, 32, 75, 138–139, 142, 151–152, 156–158, 216
freeway incident detection application, 118, 121–122
fundamental matrix, 165, 223–225
fusion algorithm selection, 215
fuzzy centroid, 47, 68
fuzzy logic, 3, 8, 29, 44–47, 52, 73, 81, 83–84, 215–218
fuzzy multi-entity Bayesian networks, 58
fuzzy ramp-metering algorithm, 68
fuzzy sets, 46–47, 217
fuzzy system, 46–47, 69

G
gate, 174
gate test statistic, 163, 174–175
<table>
<thead>
<tr>
<th>GPS</th>
<th>2, 4–6, 15, 71–73, 78–81, 183, 189, 192–193, 197</th>
</tr>
</thead>
<tbody>
<tr>
<td>GPS measurement noise</td>
<td>184</td>
</tr>
<tr>
<td>GPS modernization program</td>
<td>81–82</td>
</tr>
<tr>
<td>GPS–INS integration</td>
<td>79–81</td>
</tr>
<tr>
<td>ground truth</td>
<td>8, 71, 73, 151, 203, 212</td>
</tr>
<tr>
<td>Grossberg adaptive-resonance network</td>
<td>37, 39</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>H</th>
<th>hard data, 127, 205–207, 210–211, 214</th>
</tr>
</thead>
<tbody>
<tr>
<td>hierarchical and distributed architectures</td>
<td>20</td>
</tr>
<tr>
<td>high-level processing</td>
<td>27, 54–55, 58</td>
</tr>
<tr>
<td>Hopfield network</td>
<td>37, 40</td>
</tr>
<tr>
<td>human performance costs</td>
<td>64</td>
</tr>
<tr>
<td>human–computer interface</td>
<td>63, 66–67, 201</td>
</tr>
<tr>
<td>hybrid fusion</td>
<td>20</td>
</tr>
<tr>
<td>hypothesis space</td>
<td>32, 138</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>I</th>
<th>IF–THEN statements, 45–46, 218</th>
</tr>
</thead>
<tbody>
<tr>
<td>impact assessment</td>
<td>7, 26–28, 53–55, 57–59</td>
</tr>
<tr>
<td>incident detection</td>
<td>14, 69–70, 82, 99, 117, 121–122</td>
</tr>
<tr>
<td>incident identification</td>
<td>54</td>
</tr>
<tr>
<td>independent signature-generation phenomena</td>
<td>13, 19, 82</td>
</tr>
<tr>
<td>inductive loop detector (ILD)</td>
<td>16, 70, 73, 78</td>
</tr>
<tr>
<td>inductive loop detector (ILD) waveforms</td>
<td>78, 123</td>
</tr>
<tr>
<td>inertial navigation systems (INS)</td>
<td>5, 79–80</td>
</tr>
<tr>
<td>information definition</td>
<td>5–6</td>
</tr>
<tr>
<td>information fusion</td>
<td>12, 25, 56–57, 63–68, 203, 209–210, 212</td>
</tr>
<tr>
<td>information gain</td>
<td>209–210</td>
</tr>
<tr>
<td>information quality</td>
<td>203, 209–210</td>
</tr>
<tr>
<td>information theoretic techniques</td>
<td>3, 31</td>
</tr>
<tr>
<td>inner matrix element</td>
<td>145–146</td>
</tr>
<tr>
<td>innovation (residual)</td>
<td>170, 183, 191–192</td>
</tr>
<tr>
<td>innovation covariance matrix</td>
<td>170, 183</td>
</tr>
<tr>
<td>input matrix</td>
<td>165, 218</td>
</tr>
<tr>
<td>input vector</td>
<td>36, 39, 223</td>
</tr>
<tr>
<td>insufficient reason principle</td>
<td>120, 149</td>
</tr>
<tr>
<td>intelligent transportation systems (ITS)</td>
<td>1–5, 12, 14, 16, 26, 29, 35, 49, 52, 68, 72, 74, 79–82, 201–202, 209–213</td>
</tr>
<tr>
<td>interacting multiple model (IMM)</td>
<td>80–81, 189–193, 197</td>
</tr>
<tr>
<td>intersection</td>
<td>100, 137, 139–140, 143, 145, 153</td>
</tr>
<tr>
<td>intrusive sensors</td>
<td>15</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>J</th>
<th>Jacobian matrix of partial derivatives, 194–196</th>
</tr>
</thead>
<tbody>
<tr>
<td>JDL data fusion model</td>
<td>2, 6, 11, 24, 83</td>
</tr>
<tr>
<td>joint information source report</td>
<td>119–120</td>
</tr>
<tr>
<td>joint probabilistic data association</td>
<td>51</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Kalman filter equation set</td>
<td>171–172, 180, 184</td>
</tr>
<tr>
<td>Kalman filter initialization</td>
<td>175, 196</td>
</tr>
<tr>
<td>Kalman filter update process</td>
<td>173</td>
</tr>
</tbody>
</table>
Kalman gain control methods, 182–184
kinematic model, 189–190, 218
kinematic vehicle motion models, 186–189
knowledge-based expert systems, 3, 45–46, 64, 81, 215
knowledge definition, 5–6
Kohonen self-organizing network, 37–39

L
latency, 16, 202, 209
Level 0 fusion, 20, 25–27, 60, 83, 214
Level 2 fusion, 26–28, 52–53, 83–84
Level 3 fusion, 26–27, 52–53, 83
Level 4 fusion, 25–26, 59, 61, 83
Level 5 fusion, 19, 25–26, 62, 83
Level 6 fusion, 25–26, 83
likelihood probabilities, 32
likelihood vector, 115–116, 122, 148
logical architecture, 22
logical product, 47, 69
logical templates, 44–45
low-level processing, 27, 214
low-level processing Level 1 fusion algorithms, 27, 47–48

M
maneuver detection, 130–131, 133, 135
maneuver prediction, 80, 133, 185, 189, 191
Markov factorization, 130
maximal likelihood, 30, 51
measurement error, 164, 166, 168, 173, 182, 185
measurement error-covariance matrix, 167–169, 173–174
measurement model, 31, 165–166, 171, 218
measurement noise, 30, 163, 167, 171, 173, 175, 184–185, 194, 196
measurement-noise covariance matrix, 174–175, 182–185, 192
measurement prediction, 169–170
measurement-to-track correlation, 174–175
measures of effectiveness (MoEs), 60, 203–204, 209–211
measures of performance (MoPs), 8, 60, 203, 208–209, 212
media access control (MAC) address reader, 2, 4, 6, 15, 28, 73, 74, 204
membership functions, 46–47, 215, 218
meta architecture, 21
misclassification rate, 123
mission management, 25–26, 61, 83
Mobility as a Service, 28
Monte Carlo techniques, 3, 31, 49, 81, 84, 131, 134, 175, 197
Monty Hall problem, 104–106
multiperspective assessment, 54
multiple-classifier system (MCS), 20, 36, 79, 99, 123–127
multiple-hypothesis tracking, 51, 202

N
National Highway Traffic Safety Administration (NHTSA), 202
nearest neighbor data association, 51, 71
negation, 139–142, 156, 158, 216
noise covariance values, 185
noise-to-maneuver ratio (NMR), 182–183
nonempty set, 137, 143, 146–149, 158
nonlinear noise covariance matrix, 192–193, 218
nonlinear object motion, 193–194, 219
nonlinear observation matrix, 193–194
nonlinear state transition equation, 194–196, 219
non-optimal estimator, 193, 196–197
normalization factor, 102–103, 107, 114, 125, 143, 146, 148, 157–158
null set, 75, 137, 139, 143–144, 146–148, 158

O
object aggregation, 53
object assessment, 25–26, 54, 60
object in straight line motion, 168–169
object state matrix, 165–168, 174
observation matrix, 166, 168, 173, 176, 193–194, 218
offensive and defensive analysis, 54
one-step ahead prediction, 172, 196
optimal state estimation, 163–164
origin–destination (OD) estimation, 1–2, 4, 15, 76
orthogonal sum, 75, 144, 146–148, 157–158
output vector, 223

P
parametric classification, 32
parametric methods, 27, 31–32
parametric templates, 33, 46
particle filter, 3, 31, 49, 78, 81–82, 84
Parzen kernel distribution, 36, 76
passive sensors, 15
pattern recognition, 15, 26–27, 31, 33, 39, 44, 59
perception, 54–55, 57–58, 63
perceptron, 37, 38, 80, 123
performance refinement, 7, 28
physical models, 3, 27, 29–31
pixel-level fusion, 82
plausibility, 140–143, 158–159
plausibility transformation, 157
plausible and paradoxical reasoning, 157
plausible range, 141
position estimation, 82
power set, 139
precomputed gains, 179, 182
predicted measurement, 171, 179, 196
predicted state error-covariance matrix, 176, 183–184
predicted state estimate, 166, 169, 172, 176–177, 195
prediction, 164, 196
prediction gates, 48–51
preposterior, 102, 113, 120
principle of indifference, 112, 134, 149, 216
probability distributions, 22, 31, 73–74
probabilistic neural network (PNN), 35–37, 76, 79, 123
probability mass, 32–33, 52, 71, 73–75, 137–149, 150, 155–159, 215, 220
probability mass from confusion matrices, 151, 153–154
probability mass from feature extraction, 152
probability mass from sensor measurements, 149–150
probability mass function (pmf), 7, 71, 131–132, 137, 149–151, 159
probe vehicle, 2–3, 69–70, 72–73
process noise, 8, 165, 167, 170, 173, 176, 179, 182, 184–185, 187, 194, 197
process noise covariance matrix, 166, 174, 185, 187–188, 191
process noise limits, 184
process refinement, 25–26, 55, 59, 60, 61
production rules, 46–47, 68–69, 215, 218
proposition, 7, 32–33, 136, 138–143, 145–148, 151, 155–159
public key infrastructure (PKI) security system, 204–205

Q
Q-matrix noise, 184

R
radar measurements, 163, 165, 167, 172–174, 178, 185, 193
radial basis function network, 37–38, 80, 123
random error, 166–168, 175, 182
recursive equations for corrected state covariance, 177
recursive equations for Kalman gain, 178
recursive equations for predicted state covariance, 177
recursive Kalman filter operation, 172, 175
recursive updating of posterior (a posteriori) probability, 112–113, 115–116
refuting evidence, 141, 143
resolution, 14, 16, 17–18
resource management, 25–26, 59–62
risk management, 210, 214
roadway sensors, 14, 17–18, 25, 28, 54, 61, 72, 117, 119, 135, 159
robotic fusion framework, 21
robustness, 13, 16, 209–211

S
safety-critical communications, 201–202, 205, 214
sampling interval, 166, 168–169, 178, 187–189, 218
security and credentials management, 204
self-driving vehicles, 5, 28, 57, 74, 201
semantic registration, 54
sensor and data fusion architectures, 16, 19
sensor and data fusion definitions, 12–13
sensor independence, 137, 158
sensor-level fusion, 83
sensor-level tracker, 50–51
sensor measurement matrix, 166, 168, 174
sensor registration, 16, 48, 167
sensor resolution, 16
sensor and data fusion architectures, 16, 19
similarity metric, 37
single-level tracking systems, 50–51
singleton propositions, 144, 147–148, 156
Singer correlated noise model, 186
situation analysis, 54–57
situation assessment, 7, 25–26, 33, 52, 54–58, 60
situation awareness, 21, 24–25, 54–58, 64, 84, 205, 210–211, 214
situation enhancement, 207
smoothing, 164
soft data, 127, 203, 205-208, 210-211, 214
state correction equations, 171-173, 180
state error-covariance matrix, 163, 165-166, 170, 173, 175, 185, 192-193
state estimate, 165, 171-172, 175, 184, 189-192, 196-197
state prediction equations, 172-173, 176, 180, 182
state transition matrix, 165-166, 187, 191, 194, 218
state transition model, 31, 166, 171
state vector, 165, 183, 186, 188, 223-224
supervised learning, 37-38, 40
support (belief), 22, 33, 137-143, 156, 158-159
syntactic methods, 27, 30-31, 44-45, 59
systems engineering, 61

T
Taylor's theorem, 194-195, 197
temporal and spatial correlation, 16
time-to-critical-collision-probability metric (TTCCP), 131, 133-134
toll-tag reader, 2, 6, 15, 62, 71, 74, 204
track-driven systems, 47-48
track file, 47, 48, 50-51, 83
track loss, 178, 184
track splitting, 51
track-to-track association, 49-51
tracking gate, 49-50, 174-175
traffic demand estimation, 76
traffic flow data sources, 2, 14-16, 72-73
traffic forecasting and traffic monitoring, 77-79
traffic management applications, 8, 17, 19, 22, 24, 35, 41, 53-55, 61, 63-64, 68-69, 84, 127, 167, 179
traffic state estimation, 70, 82
training set, 36-37, 39, 215, 216
trajectory prediction, 7, 99, 127, 130-133, 164
transferable belief model, 157
transition probability matrix, 192-193, 197
transportation management centers, 2, 3, 6, 14, 15, 19, 68-69, 153, 213
travel-time estimation, 4, 7, 72-74, 82, 99
truck classification, 7, 77, 99, 135, 144
truck classification application, 123-127
two-level tracking systems, 50-51
Type 1 error, 109-110
Type 2 error, 109-110

U
uncertainty, 138-139, 144-145, 156, 158, 171, 181-182, 185
uncertainty class, 32, 147, 151, 156-158
uncertainty interval, 139-143, 148, 156-158
union, 139-141, 147-148, 156, 158, 216
unscented Kalman filter (UKF), 30-31, 49, 79, 81-83
unsupervised learning, 37-39
user refinement, 7, 24-26, 62

V
vehicle and traveler intent, 53-54
vehicle detection, 17, 42, 144, 148
vehicle position estimation, 79, 82
vehicle-to-everything communications (V2X), 21, 214
vehicle-to-infrastructure communications (V2I), 6, 14, 214
vehicle-to-pedestrian communications (V2P), 6, 14
vehicle-to-vehicle communications (V2V), 6, 14, 202, 205, 214
vehicular ad hoc network (VANET), 57–58
voting fusion, 8, 33, 43–44, 69, 215

W
weigh-in-motion (WIM) measurements, 77–78, 123, 125–127
wide-area augmentation system (WAAS), 183, 193
Lawrence A. Klein received the B.E.E. degree from the City College of New York in 1963, the M.S. degree in electrical engineering from the University of Rochester in 1966, and the Ph.D. degree in electrical engineering from New York University in 1973 along with the Founders Day Award for outstanding academic achievement.

Dr. Klein consults in sensor and data fusion applications to aerospace and traffic management; millimeter-wave radar system development for commercial, military, and homeland defense; and conceptual design of efficient multimodal ground transportation systems.

As Director of Advanced Technology Applications at WaveBand (now incorporated into Sierra Nevada Corp.) in Irvine, California, he led efforts to market and develop millimeter-wave sensors and data fusion techniques for aircraft, missile, and security applications. At Hughes Aircraft (now Raytheon Systems), Dr. Klein managed Intelligent Transportation System programs and developed data fusion concepts for tactical and reconnaissance systems. He worked as Chief Scientist of the smart munitions division at Aerojet (now incorporated into Northrup Grumman Corp.), where he designed satellite- and ground-based multiple-sensor systems. As program manager of smart munitions programs, he developed sensor fusion hardware and signal-processing algorithms for millimeter-wave and infrared radar and radiometer sensor systems. He also served as program manager of manufacturing methods and technology programs that lowered costs of GaAs monolithic microwave integrated circuit components. Before joining Aerojet, Dr. Klein was employed at Honeywell, where he designed polarimetric radar and passive millimeter-wave monopulse tracking systems. His prior work at NASA Langley Research Center explored remote sensing of the Earth's surface and weather from both phenomenology and sensor development aspects.

Dr. Klein regularly teaches courses in traffic management and data fusion for SPIE, UCLA, and the Harbin Institute of Technology in Harbin, China. He is a member of Eta Kappa Nu and has been a reviewer for several IEEE Transactions journals and foreign publications. As a member of the Highway Traffic Monitoring Committee and past member of the Freeway Operations Committee of the Transportation Research Board, he identifies research needs and concepts for applying data fusion to traffic management. He is a licensed professional engineer (New York). His other books are Millimeter-Wave and Infrared Multisensor Design and Signal Processing and Sensor Technologies and Data Requirements for ITS (both published by Artech House), Sensor and Data Fusion: A Tool for Information Assessment and Decision Making, Second Edition (SPIE Press), ITS Sensors and Architectures for Traffic Management and Connected Vehicles (Taylor and Francis), and the third edition of the Traffic Detector Handbook (Federal Highway Administration).