References


References


Index

A
adaptive optics, 273, 275, 349
Al-Habash, M.A., 64
amplitude point-spread function, 179
Andrews, L.C., 64
angle dependence of speckle, 403–410
angle diversity
  for speckle suppression, 188
  in holography, 229–230
  in projection displays, 245, 249–250
angle of illumination,
  change, effects of, 156–158
angularly separated sources, 249
aperture masks for suppressing speckle
  in holography, in OCT, 239
Archibald, E., 321
Asakura, T., 353
atmospheric coherence diameter, 363, 366
atmospheric OTF, intuitive explanation, 366
atmospheric turbulence, 359
autocorrelation function of speckle
  axial, 138–141
  free-space geometry, 129–137
  imaging geometry, 137–138
average distribution of path lengths
  in volume scattering, 142
average OTFs in the presence of turbulence, 362–364
Avignon, T., 2

B
back-projection display, 240
Barakat, R., 87, 102, 105, 108
Barton, J.K., 238
Bayes, rule, 71, 73, 417
beam ratio in holography, 31, 33, 34
Beckman, P., 353
beta density function, 40–41, 285
  compared with a gamma density function, 285
  derivation of, 417–419
beta-distributed step lengths, 40
binary star separation measurement, 372
bispectrum technique in astronomy, 379–380
  information retrievable from, 381–382
  transfer function, 380–381
bivariate Gaussian density function, 69–71
Blackman, N., 395
boiling of speckle, 224
Bose–Einstein distribution
  for photoevents, 299
boundary conditions, reflection, 176
boxcar approximation, 100
Briers, J.D., 352
bright-field imaging, 273, 275–276
smooth surface, 275
Bryanston-Cross, P.J., 347
Burch, J.M., 321
Butters, J.N., 338

C
cascade of a moving diffuser and a fixed diffuser, 186
carrier frequency in holography, 228
cause of speckle, 3–4
central limit theorem, 10, 21, 51, 107, 327
changes of speckle with angle of incidence change, 188
wavelength change, 188
changes of illumination angle and wavelength, simultaneous, 161
changing diffuser, 177, 208, 245
for speckle suppression, 252–254
projected onto the screen, 252–254
characteristic function, 18, 47, 50, 101, 104, 214
definition, 18
of intensity, 29
of negative-exponential distribution, 29
of phase differences, 152
characteristic impedance, 26
Chavel, P., 2
chi-squared statistics of image intensity, 277
chromatic aberrations, 272
circular complex Gaussian random process, 65, 193
circular complex Gaussian random variables, 67
circular complex Gaussian statistics, 30, 53, 188, 388
circularly polarized light, 82, 92
cladding modes, 283–284
coherence area, 208, 210, 216, 265

correlation area of speckle intensity, 97

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 06 Mar 2020
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use
correlation area of the scattered wave amplitude, 142–143
correlation matrix, 84
counting functional, 119–121
covariance
definition, 22
matrix (see autocovariance matrix)
of intensity, 76
Creath, K., 345
critical angle, 288
cross-spectrum
object information retrievable from, 376
technique, 374–375
transfer function, 375–376
cumulative probability of speckled speckle, 62
detection statistics
direct detection, 300–301
heterodyne detection, 305–308
detection techniques, comparison of, 315–317
deterministic autocorrelation function, 96
difference of speckle intensities, 87, 336, 339, 342
difference of speckle phases, 74–76
diffuse target, 294, 301, 307, 312
diffusely scattered component, 30
diffuser with deterministic codes, 260–261
diffusion equation, 142, 172
digital light projection (DLP) device, 241–242
discrete Fourier transform, 4–5
dispersion, 233
displacement, in-plane, 323–324
displacement, out-of-plane, 323, 337, 343
Doppler filter, 310
double diffuser, 177
Durana, G., 280
dynamic diffuser projected onto a rough screen, 411–415

detection probability, 301

density function for the phase difference, 74
density of phase vortices, 125–128
depolarization of speckle, 176
depth resolution, 236
derivatives of speckle intensity, 110, 116–119, 399–400
derivatives of speckle phase, 119, 398–389
ray directions in a speckle pattern, 113–116
destroying spatial coherence using temporal coherence, 221–222
detection probability, 301
degree of coherence (see complex degree of coherence)
degree of polarization, 84–86, 89, 92
degrees of freedom, 98–99, 110, 211, 222, 269
Dennis, M., 122
dark-field imaging, 273, 277–278
smooth surface, 277
dispenser, 233
dispersion, 233
displacement, in-plane, 323–324
displacement, out-of-plane, 323, 337, 343
Doppler filter, 310
double diffuser, 177
Durana, G., 280
dynamic diffuser projected onto a rough screen, 411–415

degree of coherence (see complex degree of coherence)
degree of polarization, 84–86, 89, 92
degrees of freedom, 98–99, 110, 211, 222, 269
Dennis, M., 122
dark-field imaging, 273, 277–278
smooth surface, 277
dispenser, 233
dispersion, 233
displacement, in-plane, 323–324
displacement, out-of-plane, 323, 337, 343
Doppler filter, 310
double diffuser, 177
Durana, G., 280
dynamic diffuser projected onto a rough screen, 411–415

D
Dainty, C.J., 3, 102
dark-field imaging, 273, 277–278
smooth surface, 277
degree of coherence (see complex degree of coherence)
degree of polarization, 84–86, 89, 92
degrees of freedom, 98–99, 110, 211, 222, 269
Dennis, M., 122
density function for the phase difference, 74
density of phase vortices, 125–128
depolarization of speckle, 176
depth resolution, 236
derivatives of speckle intensity, 110, 116–119, 399–400
derivatives of speckle phase, 119, 398–389
ray directions in a speckle pattern, 113–116
destroying spatial coherence using temporal coherence, 221–222
detection probability, 301
degree of coherence (see complex degree of coherence)
degree of polarization, 84–86, 89, 92
degrees of freedom, 98–99, 110, 211, 222, 269
Dennis, M., 122
dark-field imaging, 273, 277–278
smooth surface, 277
dispenser, 233
dispersion, 233
displacement, in-plane, 323–324
displacement, out-of-plane, 323, 337, 343
Doppler filter, 310
double diffuser, 177
Durana, G., 280
dynamic diffuser projected onto a rough screen, 411–415

E
Earth’s atmosphere, 59
Ebeling, K.J., 117, 120
degree of coherence (see complex degree of coherence)
degree of polarization, 84–86, 89, 92
degrees of freedom, 98–99, 110, 211, 222, 269
Dennis, M., 122
density function for the phase difference, 74
density of phase vortices, 125–128
depolarization of speckle, 176
depth resolution, 236
derivatives of speckle intensity, 110, 116–119, 399–400
derivatives of speckle phase, 119, 398–389
ray directions in a speckle pattern, 113–116
destroying spatial coherence using temporal coherence, 221–222
detection probability, 301
degree of coherence (see complex degree of coherence)
degree of polarization, 84–86, 89, 92
degrees of freedom, 98–99, 110, 211, 222, 269
Dennis, M., 122
dark-field imaging, 273, 277–278
smooth surface, 277
dispenser, 233
dispersion, 233
displacement, in-plane, 323–324
displacement, out-of-plane, 323, 337, 343
Doppler filter, 310
double diffuser, 177
Durana, G., 280
dynamic diffuser projected onto a rough screen, 411–415

effective area in heterodyne detection, 313–314, 316
effective spot size, 147–148
effects of pupil size on contrast, 167–170
effects of surface roughness on contrast, 167–170
eigenequation, 105
eigenfunctions, 103–104
eigenvalues, 84, 86, 105, 108
  of a matrix, 106
  of the coherency matrix, 55
Elbaum, M., 382
electric field, 25
electronic speckle pattern
  interferometry (ESPI), 333,
  337–340
electronically polarized light, 82
Engineered Diffusers™, 264
Ennos, A.E., 321
Epworth, R.E., 281
equivalent area, 135, 136
error function, 98
  definition, 16
excimer laser
  coherence properties, 267
  parameters, 267
exit pupil, 138
expansion/contraction of speckle
  pattern with wavelength
  change, 160
exponential integral, 155
exponential probability density, 28
exposure fluctuations, 270–272
eye (human)
  damage, 29
  line-spread function, 258
  point-spread function, 258
  speckle in, 223–226
F
F-number, 140
false alarm error, 300
false alarm probability, 300
far field, 132
farsighted eye, speckle movement, 223
fiber-based interferometer, 232
Fienup, J.R., 384
finite number of equal-length
  phasors, 34–37
foreshortening of height variations,
  150
Fourier–Bessel transform, 19
Fourier transform, definition, 5
Fourier transform, method for
  phase estimation, 344–345
Fourier transform, method for phase
  unwrapping, 344–345
fractional pupil factor, 275–276
frequency covariance function
  of multimode fiber speckle,
  290–291
  relation to transfer function of a
  fiber, 291–293
Fresnel diffraction, 132
Fresnel integral, 130, 140, 290
Freund, I., 122
Fried, D.L., 363
Fried parameter, 363
fringe contrast, 352
fringe pattern, extracting phase
  from, 343–349
fringe pattern period, 324
Françon, M., 3
frequency covariance functions
  of speckle in a multimode fiber,
  290–291
  relation to the transfer function,
  291–293
frequency decorrelation of speckle
  in a fiber, 287
frequency diversity in OCT,
  238–239
Fresnel diffraction equation, 188
Fresnel reflection coefficients, 176
front-projection display, 240
full-frame display, 240–243, 247
fully developed speckle, 28
G
gamma density function, 50, 61,
  101–102, 105
Gaussian complex random variable,
  non-circular, 23
Gaussian density function, 51
Gaussian hypergeometric function, 76
Gaussian pulse, 269
Gaussian random process, 208
Gaussian spectrum, 237, 355
Gaussian statistics, multivariate, 65–68
Gaussian surface-height fluctuations, 198
generalized van Cittert–Zernike theorem, 131, 145, 153, 275, 328, 356
Gezari, D.Y., 370
Ghiglia, D.C., 347
Giglio, M., 147
Goldfischer, L.I., 129
Goodman, J.W., 100, 113, 129
graded-index fiber, 280
gradient of object phase spectrum, 378
gradient of speckle intensity, 116
gradient of speckle phase, 114
grating light valve (GLV), 243
grazing incidence, 188
Gregory, D.A., 333
Groh, G., 321
H
Hadamard phase mask, 261
Hankel transform, 19, 197
HDTV 108i, 241
Hermitian matrix, 54–55
heterodyne radar system, 305–308
hologram recording, 227
holography, 30, 226–231
principles of, 226–228
speckle suppression in, 228–229
human observer, effects of speckle on, 175
hypermetropic eye, 224–225
image of a “smooth” surface, speckle in, 272–273
imaging through the atmosphere, 359–361
Ina, H., 344
incoherent detection in optical radar, 293
independent speckle patterns, 50
infinite depth of focus, 240
infinite time average, 205
in-plane displacement, 323
instantaneous intensity, 27
integral equation, 103
integrated intensity, 94, 100, 104
integrated speckle, 95–99
approximate density function, 100–102
contrast, 99
exact density function, 102–105
statistics of, 94
temporal, 95
intensity correlation area, 97
intensity definition, 25–27
intensity fluctuations, atmospherically induced, 59
intensity point-spread function of the eye, 258
intensity transmission vs. exposure characteristic, 335
interlaced displays, 241
J
Jakeman, E., 60
joint density function
of speckle amplitude, 71–73
of speckle intensity, 76–78
of speckle phase, 73–76, 114
Jones matrix, 79, 84, 91
Joyeux, D., 187
Judge, T.R., 347
K
K-distributed step lengths, 39–40
K-distributions, 39, 60–61
Karhunen–Loève expansion, 102
Kluyver–Pearson formula, 34, 37, 43
known phasor plus a random phasor sum, 13–16, 30–34
Knox–Thompson technique (see cross-spectrum)
Kobayashi, S., 344
Köhler’s illumination, 215, 217
Kolmogorov, A.N., 360
Kolmogorov statistics, 373
Kolmogorov turbulence, 360
Korff, D., 373
Kowalczyk, M., 119

L
Labeyrie, A., 370
Laplacian probability density function, 87–88, 90, 117
laser pumping, 240
laser radar, 293
LCOS spatial light modulator, 242
Leendertz, J.A., 333
Lehmann, M., 3
lens aberrations, lack of effects on speckle, 138
lens pupil as an effective scattering source, 138
level crossings of speckle patterns, 119–122
level-crossing problem, 119
level-crossing rate of speckle, 119–121
line-edge fluctuations in microlithography, 270–272
line-scan display, 240, 243–244, 247, 261–262
line-spread function of the eye, 258
linear scattering coefficient, 173
linear transformations of speckle fields, 385–388
linearly polarized speckle pattern, 78 bivariate statistic of, 78–79
linearly polarized wave, 26
liquid crystal, 242
liquid crystal on silicon (LCOS), 241–242
lithium niobate doubling element, 240
local oscillator, 294, 305–310, 315–318, 294, 305–310
Løkberg, O.J., 338
long-exposure OTF, 362–364
long-exposure PSF in the presence of turbulence, 361–362,
Lowenthal, S., 187

M
M-dimensional Gaussian probability density function, 66
magnetic field, 25
Mamaev, A., 3
Mandel, L., 100
Marcum Q-functions, 34, 311
Martienssen, W., 230
Mathematica programs for stimulating speckle, 421–424
McKechnie, T.S., 230
memory effect, 157
meridional rays, 288–289
metallic surfaces, 141
methods for suppressing speckle, 175
Michelson interferometer, 232
micro-displays, 263
microlithography, speckle in, 266–272
micro-structured screen, 264–266
Middleton, D., 119
minimum size of the speckle field correlation area, 148
mirror angle centering of speckle, 156–157
modal noise in fibers, 281–283 causes of, 279
frequency dependence of, 287–289
modal time delays in a multimode fiber, 287–289
mode-coupling effects on modal time delays, 289
modes, number of
in graded-index fiber, 281
in step-index fiber, 280
moment theorem
real Gaussian variables, 66
complex Gaussian variables, 67
Morris, M.K., 264
motion of scattering surface,
out-of-focus imaging, 166
moving diffuser (see also changing diffuser)
and coherence reduction, 208–210
moving screen, 244, 246
multidimensional Gaussian distribution, 111
multimode fibers, speckle in,
279–281
multiple scattering, 79, 142,
149, 171
multiple specklegram windows,
331–332
multiplexed images in thick holograms, 230–231
multivariate Gaussian statistics,
65–66
mutual coherence function, 205, 208
mutual intensity, 206
mutually incoherent point sources, 217
myopic eye, 225

N
near field, 132
nearsighted eye, speckle movement, 223
negative-binomial distribution of photoevents, 299–300
negative-binomial signal in Poisson noise, 304–306
negative-exponential density, moments of, 28
negative vortex, 124–125, 348
Nisenson, P., 379
non-circular statistics of speckle, 166, 170
nonimaging applications of speckle, 279
nonlaser sources in projection displays, 262–264
normalized correlation, 53, 98
normalized covariance function of speckle intensity, 135
number of degrees of freedom, 98, 99
numerical aperture, 217
of optical fiber, 280
object rotation, 332–333
oblique illumination, 159
Ochoa, E., 113
ophthalmic testing with speckle, 226
optical coherence tomography, 231
analysis, 232–236
imaging, 231–232
speckle suppression in, 236–240
optical path length probability function, 172
optical projection displays,
(see projection displays)
optical radar, speckle effects in, 292–318
optical radar, suppression of speckle, 318
optical singularity, 122
optical speckle, first-order statistics, 25–27
optical transfer function, 220
optical phase vortex, 122
origins of speckle, 1–3
orthogonal functions, 6, 103
orthogonal phase codes, 245
orthonormal series, 102
out-of-plane motion, 337

P
paraxial waves, 26
Parry, G., 190
Parseval’s theorem, 165, 214
partial derivative of the phase, 113
partial fraction expansion, 50–51
partially correlated speckle patterns, 53
partially developed speckle, 55–59
contrast of, 57, 389–393
partially developed speckle intensity and phase, 389–393
partially polarized light, 79
partially polarized speckle, 79, 108
integration of, 108–110
partially polarized waves, 26, 84, 86
phase aberration function, 366
phase ambiguity, 379
phase closure principle, 382,
phase derivative statistics, 113–116
phase difference
standard deviation of, 75
statistics, 152
phase function from phase differences, 379
phase gradient, 113, 348
phase in the vicinity of a zero of intensity, 123–125
phase map dependence on path, 347
phase maps from fringe patterns, 343–344
phase retrieval, 384
phase-shifting speckle interferometry, 345–346
phase statistics, 30
nonuniform, 15, 16
uniform, 12
phase unwrapping, 345
phase-unwrapping problem, 374
phase vortex, 348
Phillips, R.L., 64
photocounting receiver, 293
photoresist, 268
photoresist threshold, 270–271
piezoelectric transducer (PZT), 346
Planck’s constant, 298
Poincaré sphere, 80–82
point-spread function, 203
point-spread functions with atmospheric turbulence, 361, 362
Poisson-distributed photo events, 299
Poisson-distributed signal in Poisson noise, 301–302
Poisson probability distribution, 44
polarized wave, 85
polarization, 69
left or right circular, 80
polarization analyzer, 79, 177
polarization diversity for reducing speckle contrast, 176–177, 222, 244
in OCT, 238
in projection displays, 245–246
polarization ellipse, 79–80
polarization properties of coherent light, 79
polarization speckle, 83, 93–94
simulation, 94
polarization state, random, 93
polarization switching, 177
positive-slope crossing, 121
positive vortex, 124
power spectral density, 129, 207, 211
definition, 132
of speckle intensity, 129, 132
of speckle intensity, free space, 129
of speckle intensity, imaging, 137
Poynting vector, 25–26
Pritt, M.D., 347
probability density function of
integrated speckle
approximate result, 100–102
“exact” result, 102–105
probability density function of $S_3$, 92–93
probability density function of the
magnitude of the phase
gradient, 115
probability transformation, 34
projection display, 240–241, 248
speckle in, 240
speckle suppression in, 244–266
projection optics, 241–244
overdesign of, 245, 250–251
overfill of, 252–254
pulse-width modulation, 242
pupil of the eye, 224
pupil size, effects of varying, 167
Pusey, P.N., 60

Q
quantum efficiency, 298

R
radiation modes, 283–284
random-length phasors, 37–42
random number of phasors,
42–45
random phase diffusers, 411–414
random phasor plus known phasor,
13–16
random phasor sum, 7
sums of, 16
with finite equal-length
components, 18–20
random variables, transformations
of, 27
random walk, 4, 56
with a finite number of steps,
18–20
with a large number of steps,
10–13
raster-scan display, 240, 244, 247,
261–262
Rastogi, P.K., 340
ray directions in step-index fiber, 288
Rayleigh density, 14, 71
Rayleigh-distributed amplitude, 11
Rayleigh-distributed step lengths,
38–39
Rayleigh distribution, 11, 17, 368
Rayleigh, Lord, 18
Rayleigh probability density
function, 11
moments of, 12
Rayleigh statistics, 11, 12
reduced scattering coefficient, 173
reduced source coherence, 211
reduction of speckle contrast
due to angle of illumination
change, 190
due to wavelength change, 190
reference wave in holography, 226
reflective wave, correlation area of,
151–152
refractive-index inhomogeneities,
359
refractive-index structure function,
360
relation between scattered wave and
surface heights, 149–156
resolution and contrast sensitivity,
effects of speckle on, 175
Rice, S.O., 100, 119
Rician density function, 14–15
modified, 31–32, 78
Rician phasor, 310
Robinson, D.W., 347
Roddier, F., 382
Roggemann, M.C., 375
rotation matrix, 88–89, 90
rotation measurement, 332
rotation of the projection screen, 247
rough object, 186–188
RPC Photonics, Inc., 264
scatterer microstructure, dependence of speckle on, 149
scattering spot shape, 188, 400–401
scattering vector, 191–192
Schmidt, J.M., 231
Scribot, A.A., 102, 107, 108
semiclassical theory of photon detection, 297
assumptions underlying, 297
semiconductor lasers, 240
semiconductor microlithography, 267
shadowing, 149, 189
shaped delta-function sheet, 71, 76
shearing interferometer, 340–343
Shkunov, V., 2
shot noise, 310, 312–313
short-exposure atmospheric MTF, 365
short-exposure atmospheric OTF simulation, 369–370
squared modulus of, 368
statistical properties of, 364–370
short-exposure PSF in the presence of turbulence, 361–362, 365
sign principle of optical vortices, 124–125
signal-to-noise ratio in coherent detection, 309–315
signal-to-noise ratio of speckle, 28–29, 32, 36, 51–52
silicon micro-mirror array, 242
simple coherent receiver, output from, 308–309
simultaneous changes of illumination angle and wavelength, 161
sinc correlation function, 102
skew rays in multimode fibers, 288
Slack, M., 18
Slepian, D., 105, 106
slit aperture, 102
smooth object, 184–186
Snell’s law, 200
Sommer, F.G., 3
spatial array of sources, 221
spatial coherence, 207
spatial coherence reduction, by time delay, 221
with circular incoherent source, 215
with two incoherent point sources, 217
spatial correlation of optical radar returns, 294
spatial density of vortices, 125
spatial integration, 95–98
spatial light modulator, 241
spatial structure of speckle, 129
spatially incoherent light, 207
specially designed screens, 245, 264–266
speckle amplitude, phase, and intensity, multidimensional statistics, 68–69
and optical radars, 293
and polarization, 79
at low light levels, 297–300
in holography, 226
in microlithography 266
in multimode fibers, 417
in OCT, 231
in the eye, 223–226
speckle contrast, 28–29, 32, 36–37, 38, 49, 51–52, 57
and surface roughness, 168
beta-distributed step lengths, 41
dependence on pupil size and surface-height variance, 167
$K$-distributed step lengths, 39
partially developed speckle, 55–59
with two diffusers, 177
Index

speckle correlography, 382–384
gallery, 382
speckle decorrelation
with angle change, 188, 198
with wavelength change, 188, 193
speckle interferometry, 333, 346
astronomical, 370–374
in metrology, 321
speckle pattern shift, 157
speckle photography, 321
motion limitations, 330–331
simulation, 325
speckle properties in depth, 138
speckle reduction by time averaging, 177–178
speckle reduction in optical radar, 318
speckle resulting from volume scattering, 170–173
speckle shearing interferometry, 340–343
speckle simulation, 421–423
speckle size in depth, 138
speckle suppression, 175
by spatial coherence reduction, 215
by temporal coherence reduction, 210
in holography, 228
in projection displays, 244
speckle transfer function, 372
exact calculation, 373
speckle translation with illumination angle change, 157
speckle with nonlaser sources, 262–264
spattered speckle, 59, 61
specklegram, 322–323, 326
with multiple windows, 331–332
specular component, 30
specular components of transmittance, 180
specular target and coherent detection, 309
spectrometer based on speckle, 318–320
Spiller, S., 230
Spizzichino, A., 353
spontaneous emission, 262
square pupil function, 181
Stachnik, R.V., 370
statistics of the derivatives of intensity and phase, 395–401
Steinchen, W., 340
step-index fiber, 279–280
Stokes parameters, 81, 83, 93
$S_0$, 83–86
$S_1$, 87
$S_2$, 87–89
$S_3$, 87, 91–93
statistics, 83–93
Stokes vector, 81
structure constant, 360
sum of $N$ independent speckle intensities, 50–52
sums of random phasor sums, 16–17
sums of speckle patterns, 46–49
correlated, 52–55
independent, 46–49
on an amplitude basis, 46
surface covariance area measurement, 353–354
from the angular power spectrum, 356–357
surface-height correlation function, 131
surface-height fluctuation in surface scattering, 142, 151
surface-height fluctuations, random, 150
surface-height measurement, 353–354
from two-angle decorrelation, 355–356
with two-wavelength decorrelation, 354–355
surface-height standard deviation measurement from the angular power spectrum, 356–357
surface microstructure, effects of, 141, 149
surface roughness measurement, 352–353
surface scattering, 141, 157, 212
surface slope, 149
super-luminescent diode, 231
symmetry of speckle intensity for smooth surfaces, 274–275
synthetic-aperture radar imagery, 2, 3

t
Takeda, M., 344, 347
Tatarski, V.I., 359
Taylor, P.A., 349
temporal autocorrelation function, 179
temporal averaging with a moving diffuser, 177–183
temporal coherence reduction, 210–212
temporal degrees of freedom, 179, 269
temporal fringe pattern, 235
temporal impulse response, multiple scattering, 172
temporal integration of speckle, 98–100, 185
temporal speckle, 268
temporal statistics of polarized thermal light, 263
thermal light, 100, 262
tilt measurement, 332
time-averaged coherence, 208
time-varying coherence, 98
time-varying hologram masks, 230
time-varying speckle, 98
Tiziani, H.J., 332
Tokarski, J.M.J., 321
tradeoff between speckle suppression and image brightness, 188
transformation of random variables, 27
translation of speckle with wavelength change, 159
transmission vs. exposure curve, 335
transverse displacement, 324
limitations in speckle photography, 330
measurement of, 323
transverse normalized correlation functions, 141
triple correlation, 379
Trisnadi, J.I., 260, 261
tropopause, 361

u
ultrasound medical imagery, 2
uncorrelated expansion coefficients, 103
unitary linear transformation, 55
unpolarized speckle, 110
unpolarized wave, 26, 85

v
van Ligten, R.F., 230
vector level crossing rate of speckle intensity, 121
vibration measurement using speckle, 349–352
viewing screen, specially designed, 264
vignetting, 145
volume scattering, 141, 157, 170, 214, 248
vortex circulation, 124
vortex density
of fully developed speckle, 125–127
of fully developed speckle plus a
coherent background, 127–128

W
wavefront dislocation, 122
wavelength change, 193–195, 158–161, 188
effects of, 156
wavelength dependence of speckle, 159, 403–410
wavelength diversity
for speckle suppression, 188
in holography, 229–230
in OCT, 238–239
in projection displays, 245, 248–249
wavelength of illumination, 191
Webb, K.J., 172
Welford, W.T., 230
Welsh, B. 375
Westheimer, G., 258
Wiener–Khinchin theorem, 207
Wolf, E., 205
wrapped phase, 155
wrapped phase function, 155

X
Xiang, S.H., 231

Y
Yang, L., 340
Yung, K.M., 231

Z
Zel’dovich, B., 3
Zernike, F., 137, 208
Zernike approximation, 137, 215
zeros of speckle intensity, 122–123
zeros of speckle patterns, optical vortices, 122–123
Zubia, J., 280
Joseph W. Goodman received an A.B. degree from Harvard and M.S and Ph.D. degrees from Stanford University. He joined the faculty of the Department of Electrical Engineering at Stanford in 1967, chaired the department from 1989 to 1996, and served as Senior Associate Dean of Engineering from 1996 until 1999. He retired from Stanford in January of 2001. Dr. Goodman is the author of *Introduction to Fourier Optics* (now in its fourth edition), *Statistical Optics* (now in its second edition), and *Speckle Phenomena in Optics*. He has received numerous awards from IEEE, ASEE, The Optical Society (OSA), and SPIE, including the highest awards given by the latter two societies. He was a cofounder of Optivision, Inc., Roberts and Company Publishers, and NanoPrecision Products, Inc., and was founding Chairman of the Board of ONI Systems. He is a member of the National Academy of Engineering, a Fellow of the American Academy of Arts and Sciences, and an Honorary Member of OSA.