


INDEX

Abbe number, 14
Aberrations, 13
Acousto-optical filters, 46
Aircraft plume measurements, 74
Angle shift, 44
AOTF approach, 77
Bandwidth, 28
Beams, 9
Blazed gratings, 58
Blur circle, 14
Bull's eye, 69
Charge collection, 39
Circular variable filters, 44
Convergent beams, 9
Critical angle, 10
Detector elements, 27
Detector limits, 35
Detector arrays, 35
Diffraction, 11
Diffraction theory, 55
Divergent beams, 9
Eglin approach comparisons, 83
Emissivity, 17
Exitance, 17
Fabry-Perot throughput, 71
Fabry-Perot resolving power, 71
Fabry-Perot spectrometers, 70
Fabry-Perot filters, 45
Field of view, 27
Figures of merit, 39
Filter-wheel approach, 76
Fly's-eye approach, 77
Focal ratio, 20
Fourier transform spectrometer, 62
Free spectral range, 26
Front-filter approach, 75
FTS approach, 79
FTS sensitivity, 65
Fundamental equation, 19
General trade-offs, 103
Grating spectrometers, 55
Grating approach, 79
Grating resolving power, 57
Grating spectrometer throughput, 58
HYDICE, 108
Incidence, 17
Intensity, 17
Interference, 8
Kayser, 23
Lens maker's equation, 12
Lens bending, 15
Linear variable filters, 44
LWIR, 4
Mars 1-D arrays, 95
Mars 2-D arrays, 98
Mars Rover, 90
Martian environment, 91
Michelson interferometer, 60
Mineral properties, 91
Minimum deviation, 51
Multilayer filters, 43
Multislit diffraction, 56
Multispectral scanners, 3
MWIR, 4
NEL, 38
NESL, 38
Numerical aperture, 20
One-layer filters, 42
Optical speed, 20
Overlapping of orders, 58
Parallel scan, 29
Pixels, 27
Prism deviation, 50
Prism spectrometer throughput, 52
Prism resolving power, 52
Prism spectrometer layout, 52
Projected solid angle, 20
Pupils, 21
Pushbrooms, 31
Radiative transfer, 19
Rays, 9
Rear-filter approach, 76
Reflection, 9
Refraction, 9
Resolution, 23
Resolving power, 24
Rover results, 99
Rover requirements, 90
Rover improvements, 99
Satellite imaging spectrometer, 84
Scanners, 28
SIS requirements, 84
SIS properties, 85
SIS results, 88
Solid angle, 20
Specific detectivity, 33
Spectral variables, 23
Sterance, 17
Stops, 21
Strip mapper, 30
SWIR, 4
TDI, 29
Thin lens, 12
Throughput, 19
TRW spectral imagers, 110
Twyman-Green interferometer, 62
Ultraspectral, 4
Walkoff, 71
Westinghouse AOTF, 108
Whiskbrooms, 32
WILLIAM L. WOLFE was born in Yonkers, New York, at a very early age. He received a BS in physics, cum laude, from Bucknell University. He did graduate work at the University of Michigan, where he received an MS in physics and an MSE in electrical engineering. (The reception of these degrees was not automatic, but required a certain amount of work.) While attending the University of Michigan, he held the positions of Research Engineer and Lecturer, and engaged in projects such as the development of a full-body thermographic scanner for medical analyses and a hot-rolled strip steel defect detector. In 1966 he finally left school to join the Honeywell Radiation Center in Lexington, MA, as Department Manager and Chief Engineer. While at Honeywell he supervised the development of infrared tank night-driving systems, a radiometer for sensing the infrared horizon from orbit, and infrared rifle sights. In 1969 he returned to school, specifically the University of Arizona, where he became Professor of Optical Sciences in the Optical Sciences Center. While there he supervised over 30 students, developed a cryogenic refractometer and the first automated scatterometer for three-dimensional scatter measurements, a probe that measured the solar flux in the atmosphere of Venus, a helicopter night-driving system, and other devices. In 1996 he became (officially) Professor Meritless, and under this guise has been investigating optical cancer detection and the early measurement of glaucoma. He has been a Fellow and on the Board of Directors of the Optical Society of America; a Senior Member of IEEE; and a Fellow, Life Member, and past president of SPIE—The International Society for Optical Engineering. He is the Editor-in-Chief of Infrared Physics and Technology, coeditor of The Infrared Handbook, Associate Editor of the Handbook of Optics, and author of a Tutorial Text on Infrared System Design. He is the proud father of three wonderful children, who are no longer teenagers, two grandsons, and a granddaughter. In his spare time, he sings, fly fishes, gardens, and uses his wife's phone.