INDEX
Abrahsion test, 202
Abrasive, 181
Abrasive liquid jet machining, 332
Absolute damage threshold velocity (ADTV), 239
Absorptance, 13, 14, 30 coating, 203
Absorption extrinsic, 30 free carrier, 46-47 surface, 13 wavelength effect, 30
Absorption coefficient, 13, 14, App. C general behavior, 28-30 measuring, 36-39 relation to k, 27 silicon, 49 surface, 39 temperature effect, 49
Acetylene torch reactor, 308
Acoustic impedance, 256
Acoustic mode, 51, 52
Acoustic wave, 129
Adhesion test, 202
Adhesive for cladding, 256-257, 266-267
ADTV, 239
Aero-optic distortion, 144
Aerodisk, 145, 146
Aerodynamic dome, 144-145
Aerodynamic effect on rain erosion, 241-243
Aerospike, 145, 146
Agglomerate, 156
Air, heat capacity, 141 (see also atmosphere)
Aircraft window reliability, 298
Airstream characteristics, 112, 142
Airy disk, 63
<table>
<thead>
<tr>
<th>Material</th>
<th>Properties/Characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cadmium telluride</td>
<td>elastic constants, 378, transmission window, 57</td>
</tr>
<tr>
<td>Calcium fluoride</td>
<td>App. C & D, elastic constants, 378, expansion, 128, hardness, 117, heat capacity, 128, Poisson ratio, 135, polishing, 181, refractive index, 17, strength, 105, 135, 185, thermal conduct., 128, 130, thermal properties, 392, thermal shock, 135, transmission, 32, 34, transmission window, 56</td>
</tr>
<tr>
<td>Calcium carbonate</td>
<td>(calcite), 20, chloride, 115, density, 114, elastic constants, 378, expansion, 128, heat capacity, 128, microwave e/tanθ, 80, modulus, 135, Poisson ratio, 135, polishing, 181, refractive index, 17, strength, 105, 135, 185, thermal conduct., 128, 130, thermal properties, 392, thermal shock, 135, transmission, 32, 34, transmission window, 56</td>
</tr>
<tr>
<td>Cesium iodide</td>
<td>elastic constants, 378, expansion, 128, grain size/strength, 120, heat capacity, 128, strength, 105, thermal conduct., 128, transmission window, 56</td>
</tr>
<tr>
<td>C-H absorption</td>
<td>326-327</td>
</tr>
<tr>
<td>Chalcogenide</td>
<td>266</td>
</tr>
<tr>
<td>Chalcogenide glass</td>
<td>150</td>
</tr>
<tr>
<td>Chamfer</td>
<td>92, 94</td>
</tr>
<tr>
<td>Chemical etching</td>
<td>187</td>
</tr>
<tr>
<td>Chemical vapor deposition</td>
<td>163ff, 306-309</td>
</tr>
<tr>
<td>Chemo-mechanical polishing</td>
<td>181</td>
</tr>
<tr>
<td>Circular window design</td>
<td>109-110</td>
</tr>
<tr>
<td>Cladding</td>
<td>255, 266-269</td>
</tr>
<tr>
<td>Clamped window</td>
<td>109</td>
</tr>
<tr>
<td>Cleartran</td>
<td>59, 96-97</td>
</tr>
<tr>
<td>Closed porosity</td>
<td>156</td>
</tr>
<tr>
<td>Cloth, polyethylene</td>
<td>189</td>
</tr>
<tr>
<td>Blackbody</td>
<td>3</td>
</tr>
<tr>
<td>Blackbody photon flux</td>
<td>73</td>
</tr>
<tr>
<td>Bohr magneton</td>
<td>344</td>
</tr>
<tr>
<td>Boltzmann's const.</td>
<td>4, 344</td>
</tr>
<tr>
<td>Borax</td>
<td>187</td>
</tr>
<tr>
<td>Boron carbide hardness</td>
<td>116</td>
</tr>
<tr>
<td>Boron nitride</td>
<td>App. C hardness, 116, microwave properties, 80</td>
</tr>
<tr>
<td>Boron phosphate</td>
<td>App. C coating, 259-264, elastic constants, 378, expansion, 128, heat capacity, 128, MIJA threshold, 261, refractive index, 17, sand erosion, 260, thermal conduct., 128, transmission, 260, 261</td>
</tr>
<tr>
<td>Boundary, grain</td>
<td>21, 96, 151-152</td>
</tr>
<tr>
<td>Bow shock wave</td>
<td>145, 146</td>
</tr>
<tr>
<td>Braze</td>
<td>266</td>
</tr>
<tr>
<td>Bridgman growth</td>
<td>170</td>
</tr>
<tr>
<td>British thermal unit</td>
<td>345</td>
</tr>
<tr>
<td>Brittle behavior</td>
<td>85</td>
</tr>
<tr>
<td>BS37A</td>
<td>18</td>
</tr>
<tr>
<td>BS39B</td>
<td>18, 380</td>
</tr>
<tr>
<td>BTDF</td>
<td>66</td>
</tr>
<tr>
<td>BTU</td>
<td>345</td>
</tr>
<tr>
<td>Bug impact damage</td>
<td>217</td>
</tr>
<tr>
<td>Bulk absorption</td>
<td>323-324</td>
</tr>
<tr>
<td>Bulk modulus</td>
<td>87, 88, 381</td>
</tr>
<tr>
<td>Bulletproof window</td>
<td>159</td>
</tr>
<tr>
<td>Burned crack</td>
<td>254</td>
</tr>
<tr>
<td>Burned mesh</td>
<td>212</td>
</tr>
<tr>
<td>Burnout</td>
<td>156</td>
</tr>
<tr>
<td>Cadmium sulfide</td>
<td>App. C density, 114, refractive index, 17, transmission window, 57</td>
</tr>
<tr>
<td>Cesium iodide</td>
<td>elastic constants, 378, expansion, 128, grain size/strength, 120, heat capacity, 128, strength, 105, thermal conduct., 128, transmission window, 56</td>
</tr>
<tr>
<td>C-H absorption</td>
<td>326-327</td>
</tr>
<tr>
<td>Chalcogenide</td>
<td>266</td>
</tr>
<tr>
<td>Chalcogenide glass</td>
<td>150</td>
</tr>
<tr>
<td>Chamfer</td>
<td>92, 94</td>
</tr>
<tr>
<td>Chemical etching</td>
<td>187</td>
</tr>
<tr>
<td>Chemical vapor deposition</td>
<td>163ff, 306-309</td>
</tr>
<tr>
<td>Chemo-mechanical polishing</td>
<td>181</td>
</tr>
<tr>
<td>Circular window design</td>
<td>109-110</td>
</tr>
<tr>
<td>Cladding</td>
<td>255, 266-269</td>
</tr>
<tr>
<td>Clamped window</td>
<td>109</td>
</tr>
<tr>
<td>Cleartran</td>
<td>59, 96-97</td>
</tr>
<tr>
<td>Closed porosity</td>
<td>156</td>
</tr>
<tr>
<td>Cloth, polyethylene</td>
<td>189</td>
</tr>
</tbody>
</table>
Index

thickness measurement, 201-202
Coblentz sphere, 65
Coefficient of thermal expansion, 126
Cold isostatic pressing, 156
Colloidal silica, 181
Color, 2
Columnar growth, 310
Combination band, 51
Combined effects (sand and rain erosion), 248
Comparative erosion testing, 250-252
Compax, 305
Complex refractive index, 27
Compliance coefficients, 376, 378
Compliant adhesive, 256-257
Compliant coating, 255
Compression wave, 222
Conduction band, 46
Conductive coating, 207-212
Conductive mesh, 212
Conductivity
electrical, 209
thermal, 128-132
Cone of acceptance, 16
Contact diameter, 224
Conversion factors, 345
Cooling channel, 74
Copper, 130, 319, 327
Core drilling, 188
Corning 0160 dome, 215
Corning 9754 glass, 18
density, 114
elastic constants, 380
expansion, 128
heat capacity, 128
thermal conduct., 128
Corundum (see sapphire)
Cosmic ray, 2
Cost of fabrication, 155
Crack, buried, 254
Crack growth, 98, 217, 285-290
Critical angle, 16
Critical flaw, 95-98
Critical stress intensity, 118
Cryolite, 202
Crystal, 150-151
CTE, 126
Cubic material, 20
Curvature, 183
Cutoff frequency, 70
Czochralski growth, 170, 171
Damage parameter, rain
impact, 227, 228
Damage threshold velocity
224-232
diamond, 332
diamond coatings, 270
drop size effect, 226
equation, 227
DAR coating, 248, 260, 264-266
dB (decibel), 7
DC torch reactor, 307
Deagglomeration, 156
Decibel, 7, 209
Decomposition, 147
Deflection,
bend bar test, 91
coating, 205-207
disk flexure test, 93
Denier, 189
Density
atmosphere, 142
window materials, 114
Design of window/dome, 109-113
Design safety factor, 101-103, 109-110
DI-100/200, 80
abrasive liquid jet machining, 332
absorption coefficient, 14, 39, 322-325
acetylene torch, 308
antireflection coat, 197, 199, 329
arc jet, 308
atom density, 304
boron, 304-305, 336
CH absorption, 326-327
chemical vapor deposition, 306-309
coating, 270-273, 303
color, 304
commercial grades, 321
critical flaw size, 317
crystal structure, 304
cutting tools, 305, 312
damage threshold, 333
dc torch, 307
density, 114, 320
dielectric constant, 311
dielectric properties, 328-329
dissolution in hot metals, 331-332
dn/dT, 60, 327-328,
App. C
dome, 330, 331
elastic constants, 313, 378, 380
electrochemical machining, 332
emittance, 323, 325
erosion, 332-334
expansion, 128, 311, 317-318
flaws, 316
fract. toughness, 118, 313
graphitization, 305
growth rate, 306, 308
growth stress, 317
hardness, 116, 311, 312
heat capacity, 128, 320
hot filament, 307
hydrogen, 327
ion beam shaping, 332
isotope effect, 320
laser machining, 331
laser window, 330
loss tangent, 311, 329
mechanical grade, 321
mechanical strength, 313-315
metal-induced nucleation, 308
microstructure, 309, 310, 311
microwave properties, 80, 81, 328-329
MIJA threshold, 239
MTF, 331
modulus, 135, 311, 313
moth eye, 199
multiphonon absorption, 58
nitrogen, 304-305
nucleation, 309
optical absorption, 322-325
optical constants, 28
optical grade, 321
oxidation, 334-336
patent, 309
phase diagram, 305
Poisson ratio, 135, 311
polishing, 330-332
polycrystalline, 305
preferential growth orientation, 309
rain damage threshold, 228
rear surface erosion failure, 332-333
reflectance, 325
Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 17 Aug 2019
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use
Diamond, continued
refractive index, 17, 327-328
release layer, 309
resistivity, 304-305
sand erosion, 246, 247, 248, 272-273, 312, 334
scatter, 325-326
spontaneous fracture, 317
sputtered interlayer, 308
strength, 105, 311
substrates, 307, 308
surface absorption, 14, 323-324
surfaces, 309-311
temperature effect on absorption, 324-325
thermal conductivity, 128, 311, 318-320, 393
thermal expansion, 128, 311, 317-318
thermal grade, 321
thermal shock, 135, 311
thermo-optic distortion, 330
transmis. window, 56, 321
types, 304
ultraviolet absorp., 326
window, 303, 329-336
ZnS composite, 165-167
Diamond-like carbon (DLC), 197, 258, 259
Diamond turning, 181-182
Dielectric constant, 44, 77
Diffraction, 63
Diffraction limited, 63
Diffuse reflection, 22
Diffusivity, thermal, 129
Dig, 180
Dilatational wave, 222
Dilational wave, 222
Dimpling, 185
Dipole moment, 57
Dispersant, 156
Dispersion, 18, App. C
Dispersion, normal, 29, 30
DLC (see diamondlike carbon),
\(dn/dP \), 18
\(dn/dT \), 18, 25-26, 60
Dome
aerodynamic, 144-145
blank, 157
core drilled, 188
diamond, 330, 331
design, 111-113
mullite, 1, 136
near-net-shape, 175
pyramidal, 145
rain erosion, 215
scatter, 66
scooping, 174, 175
strength, 188
stress, 136
temperature, 136
thermal shock, 138, 139
thermal stress, 138-139
thickness, 141
Double cantilever specimen, 286
DROPs computer code, 243
dropsize effect on damage threshold, 226
Dual threshold, erosion, 263
ductile behavior, 85
Duroid, 80
Dust, 6-11
dynamic fatigue, 281
Dyne, 345
Effective area, 104, 384
Effective volume, 384
EFG method, 176
Elastic behavior, 85
Elastic constants, 84-88, App. E
Elastic limit, 105
Electrochemical machining, 332
Electron magnetic moment, 344
Electron mass, 344
Electron volt, 326, 345
electronic transitions, 29
Elemental zinc sulfide, 59, 165-166
Elementary charge, 344
Emissivity, 39-42
Emissance, 4, 39, 71
coating, 202-203, 263
Energy of light, 2
Engineering strain, 375
Equibiaxial flexure test, 92-94, 95
Equivalent drop size, waterjet, 236-237
Eraser test, 202
Erg, 345
Erosion, 215-273
angle incidence, 249-252
comparative, 250-252
diamond, 332-334
moth eye, 333
solid particle, 243-248
window lifetime, 298
Etalon, 25-26
Etching, 187
Exitance, 4-6, 327
Expansion coeff., 126, 391
Exploding wire, 240
External transmittance, 13
Extinction coefficient, 27, 168, 322
Extraordinary direction, 19
Extrinsic property, 30
F number, 63, 70
Fabrication, polycrystalline material, 155-158
Factorial function, 386
Faraday constant, 344
Fatigue, 299-300
Feldspar hardness, 116
Fiber, 16
Fiber strength, sapphire, 177
Figure of merit, thermal shock, 132, 135, 137, 140
Filter, Rugate, 203-204
Finish, effect on strength, 183-188
Finishing, 177-188
Flame fusion, 172
Flame polishing, 187
flat plate transmittance and reflectance, 23, 24
Flatness, 182
Flaw size, 119
Flexure specimen, 385
Flexure strength, 89
Flexure test, 89-94
FLIR grade ZnS, 164
Float polishing, 181
float zone method, 171-172
Fluoride glass, 150
Fluorite, 116
Fluorocarbon polymer antireflection coat, 197
Fog, 6-11
Foot-pound, 345
Force constant, 50
Four-point flexure test, 90
Fractography, 95
Fracture mirror, 94
Fracture modes, 118
Fracture strength rain damage, 225, 227
Fracture toughness, 118
effect on strength, 119
rain damage threshold, 227, 228
Free carrier absorption, 46-47
Free spectral range, 26
Free-stream pressure, 111
Frequency, 2
 spatial, 31
Frequency doubling, 76-77
Fringe, 183, 201-202
Fundamental transition, 51
Fused silica, App. C
density, 114
\(dn/dT\), 60, App. C
elastic constants, 380
expansion, 128
fract. toughness, 118
hardness, 117
heat capacity, 128
ice particle erosion, 243
microwave properties, 81
modulus, 87, 135
Poisson ratio, 135
refractive index, 17
strength, 105, 135
thermal conduct., 128, 130
thermal shock, 135
transmission spectrum, 31
transmission window, 56
uv-visible transmiss., 34

gallium arsenide, App. C, App. D
 2-color properties, 59
 absorption coeff., 211
 antireflection coat, 197
 band gap, 46
 carrier conc., 47
 conductive, 211
 crystal growth, 170
density, 114
diamond turning, 182
\(dn/dT\), 60, App. C
elastic constants, 378
expansion, 128
fracture toughness, 118
hardness, 117
heat capacity, 128
illumination effect, 47, 50
rain damage threshold, 221
refractive index, 17
temperature limit, 46
temp./transmission, 48
thermal conduct., 128
thermal expansion, 318
thermal properties, 394
temperature limit, 46
temp./strength, 109
temp./transmission, 48
temperature limit, 46
temp./strength, 109
thermal conduct., 128
thermal expansion, 318
thermal properties, 394
temperature limit, 46
temp./transmission, 48
thermal conduct., 128
thermal expansion, 318
thermal properties, 394
temperature limit, 46
temp./transmission, 48
thermal conduct., 128
thermal expansion, 318
...
Grinding, 181
Grinding damage, 184-188
Grocery scanner window, 176
Ground state, 51
Growth stress, 317
Gypsum hardness, 116

Hafnia coating, 197
Half-penny crack, 114
Hard carbon coating, 258
Hardening, 117
Hardness, 114, 121
Harmonic oscillator, 50
Hasselman figure of merit, 133, 134ff
Heat capacity, 127, App. G
Heat exchanger method, 173
Heat flux, 128, 141
Heat-seeking missile, 1
Heat transfer coefficient, 45, 133, 141
Heat transfer, radiant, 130
Hemispheric emissivity, 40
HIP, 157
Hoop stress, 92-93
Horsepower, 345
Hot filament reactor, 307
Hot forging, 177, 178
Hot isostatic pressing, 157, 161
Hot pressing, 161
Hot window effects, 71-76
Humidity, 9
Humidity, effect on crack growth, 287-290
Humidity test, 202
Hydride, 164
Hydrogen selenide, 163
Hydrogen sulfide, 163
Hydrometeor raindrop test facility, 240

Ice
biøreïÎngence, 19
erosion, 243
Illumination effect on Ge transmission, 50
Impedance, acoustic, 256
Impurity absorption, 29
In-line transmittance, 13
Inch, 345
Indentor, 115
Index of refraction (see refractive index)
Indium phosphide, 56

Infrared-guided missile, 1
Infrared radiation, 1, 2
long wave, 2, 3
midwave, 2, 3
Infrared seeker, 1
Infrared/visible window, 29
Insect impact damage, 217
Interband absorption, 46
Interference fringe, 25-26, 201-202
Interferometry, 182
Internal transmittance, 12, 13, 77
Intraband absorption, 46
Intrinsic property, 30
Ion beam shaping, 332
IRBAS, 80
IRG-11, 18, 380
IRG100
expansion, 128
thermal conductivity, 128
transmission window, 56
Irradiance, 67, 372
Irtran, 18, 150
Irtran-1, 34, 40
Irtran-2, 40
Isostatic pressing, 156
Isotropic material, 19, 381
Isotropic solid, 87
Jet engine, 5
Joule, 345

k (optical constant), 27
Kf, 118
Kilogram, 345
Klein figure of merit, 140
Knoop hardness, 115, 116
Knoop indentor, 115
KRS-5, 18, App. C
density, 114
elastic constants, 378
expansion, 128
hardness, 117
strength, 105
thermal conductivity, 128
transmission window, 57
KRS-6, 18
Ksi, 85, 345

LA, 51
Lambertian radiator, 373
Lanthana-doped yttria, 88, App. C
annealing, 162-163
density, 114
elastic constants, 380
expansion, 128
fabrication, 159-161
fract. toughness, 119, 161
grain size/strength, 120
hardness, 117
heat capacity, 127, 128
hydroxyl removal, 162
microwave properties, 80
modulus, 135
nylon bead impact, 240
phases, 159
Poisson ratio, 135
sintering, 159-160
strength, 105, 108, 135
thermal conduct., 128, 131
thermal properties, 395
thermal shock, 135
transmission spectrum, 31
transmission window, 56
uv-visible transmiss., 35
wind tunnel test, 139
Lanthanum fluoride, 197
LANTIRN window, 217, 231
Lapping, 181
Laser calorimetry, 37
Laser flash method, 131
Laser machining, 331
Laser rod, 13
Laser window, 198, 330
Lateral crack, 244
Lateral outflow jetting, 223
Lattice vibrations, 29
Lead fluoride
antireflection coat, 197
hardness, 117
stress in coating, 205
transmission window, 57
Lead sulfide, 117
Lead telluride, 117
Light, 2, 15
Linear elastic behavior, 376
Liter, 345
Lithium fluoride, App. C
density, 114
dn/dT, 60, App. C
elastic constants, 378
expansion, 128
heat capacity, 128
refractive index, 17
sintering aid, 121
strength, 105
thermal conductivity, 128
thermal properties, 396
transmission spectrum, 32
transmission window, 56
uv-vis transmiss., 34, 35
Lithography, 212, 273
LO, 51
Long wave window, 2, 3
Longitudinal vibration, 51, 52
Longitudinal wave, 222, 230
Loss tangent, 44, 77
Lucite, 233

Mach-altitude limit, 141
Mach number, 45, 112
Machining, 181
Magnesium fluoride, 1, App. C
MRF finishing, 181
antireflection coat, 197
birefringence, 19
coating, 202
density, 114
diamond turning, 182
dn/dT, 60, App. C
elastic constants, 380
emittance, 40
expansion, 128
fabrication, 87
hardness, 117
heat capacity, 128
microwave absorption, 78
microwave properties, 80
MIJA threshold, 239
modulus, 135
Poisson ratio, 135
rain damage threshold, 224, 228, 230, 232
refractive index, 17
sand erosion, 247
scatter, 66
strength, 105-107, 135, 187
stress in coating, 205
thermal conductivity, 128
thermal properties, 397
thermal shock, 135
transmis. spectrum, 31, 32
transmission window, 56
transmittance, 24
uv-visible transmis., 34
Magnesium oxide, App. C
antireflection coat, 197
density, 114
elastic constants, 378
expansion, 128
grain size/strength, 120
hardness, 117
heat capacity, 128
microwave properties, 81
modulus, 135
Poisson ratio, 135
refractive index, 17
strength, 135
thermal conductivity, 128
thermal shock, 135
thermo-optic distortion, 330
transmission window, 56
uv-visible transmis., 35
Magnetic permeability, 209
Magnetorheological finishing, 181
Marshall-Palmer distribution, 218
Mass loss
heating ZnS, 147
rain erosion, 231-232
Mean free path, phonon, 129
Mean strength, 386-390
Mechanical properties, 84-121
Mechanical strength
grain size effect, 314
rain damage, 225, 227
Median crack, 114
Mesh, 212
Metal-induced nucleation of diamond, 308
Melt, 345
Methyl radical, 306
Microstructure, 92
Microwave, 2
plasma reactor, 306
shielding, 207-212
transmission, 44ff, 77-81
window, 2, 3
Mie scattering, 68
MIJA, 237-239
damage threshold, 259
MIL-0-13830, 180
MIL-F-48616, 180
Millling, 156
Missile, 1
Missile dome erosion, 215
mm Hg, 345
Modes of fracture, 118
Modulation, 69
Modulation transfer function, 68-71, 231-331
Modulus, 85
biaxial, 206
erosion protection, 253
rupture, 88
Weibull, 99
Mohs hardness, 116
MOR, 88
Moth-eye, 190-191, 199
erosion, 333
MPa (megapascal), 345

Natural rain, 218
Nd:YAG laser rod, 13
Near-net-shape dome, 175, 176
Neodymium fluoride, 197
Newton, 345
Niobium release layer, 309
Nitroxyceram, 80
Normal dispersion, 29, 30
Nylon bead, 240

Ohms per square, 208
Optical axis, 19
Optical brazing, 270-272
Optical constants, 27, 231, App. C
Optical fiber, 16
Optical figure, 178
Optical finishing, 177-188
Optical flat, 182
Optical mode, 51, 52
Optical pathlength, 75, 76
Optical polish, 96
Optical properties, 12ff, 63ff, App. C
Optical scatter, 20, 21
OPTIMATR, 40, 41, 44
Ordinary direction, 19
Organic composite radome, 80
Overtone, 51
Oxidation, 147, 334-335
protection, 265
Oxygen deficiency, 156
Ozone, 3

Pascal, 85, 345
Pathlength, 7
Periodic table, 55
Permeability of space, 344
Permittivity of space, 344
Petch equation, 120, 178
Phonon, 30, 51, 129, 320
Photon, 2
Photon flux, 73
Photonic flux, 73
Photon noise, 71
Physical constants, 344
Pi, 344
Pinhole, 158
Planck distribution, 4, 73
Planck's constant, 2, 344
Plastic deformation, 87, 114
Plexiglass, 233
PMMA, 233
Poisson's ratio, 86, 380, 381
Planck distribution, 4, 73
Planck's constant, 2, 344
Plastic deformation, 87, 114
Plexiglass, 233
PMMA, 233
Poisson's ratio, 86, 380, 381
Polarizability, 11
Polarization, 20
Polish, 158
Polishing, 181-183
diamond, 330-332
Polishing damage, 184-188
Poly(methylmethacrylate)
(PMMA), 233
Polycrystalline material, 20, 21, 150-152, 155ff
diamond, 305
Polyethylene, 189-191
Polymer adhesive, 256-257, 266-267
Polymer cladding, 268-269
Polymer window, 189-191
Pore, effect on scatter, 68
Potassium bromide, App. C
density, 114
elastic constants, 378
expansion, 128
hardness, 117
heat capacity, 128
strength, 105
thermal conductivity, 128
transmission window, 57
Potassium chloride
bulk absorption, 13
expansion, 128
hardness, 117
heat capacity, 128
hot forging, 178
strength, 105
surface absorption, 13
thermal conductivity, 128
Potassium iodide, 57
Potential well, 50
Pound, 345
Powder processing, 155ff
Power, radiant, 12
Pressing, isostatic, 156
Pressure
acceleration, 113
atmosphere, 142
dome, 111
free-stream, 111
rain impact, 223-224
refractive index, 18, App. C
stagnation, 111, 112
Prism, 27
Probability of failure, 99
Profiler, 179
Projectile, cannon-launched, 113
Proof test, 106, 113, 280-298
space shuttle window, 295-298
time, 290-295
Protective coating, 252-273
mechanism, 252-257
Proton mass, 344
psi (pound/in2), 345
Pyramidal dome, 145
Pyroceram, 80
Quantum number, 50
Quarter-wave coating, 195
Quartz, App. C
birefringence, 19
density, 114
hardness, 116
structure, 151
thermal conductivity, 130
transmission spectrum, 31, 32
transmission window, 56
uv-visible transmission, 34
Quartz crystal microbalance, 202
Quartz-polyimide, 80
Radial crack, 114, 244
Radial stress, 92-93
Radiance, 67, 373
Radiant emission, 3-6
Radiant energy, 371
Radiant flux, 371
Radiant heat transfer, 130
Radiant intensity, 372
Radiant power, 12, 371
Radiation, electromagnetic, 2
Radio wave, 2
Radiometry, 371
Radome, 78
Rain, 218-220
distortion, 241
visibility, 6-11
Rain erosion
aerodynamic effects, 241-243
damage threshold
velocity, 224-232
effect of stress, 230-231
effect on MTF, 231
Radome, 78
Radiolocation, 371
Radome, 78
Rain, 218-220
distortion, 241
visibility, 6-11
Rain erosion
aerodynamic effects, 241-243
damage threshold
velocity, 224-232
effect of stress, 230-231
effect on MTF, 231
Radome, 78
Rayleigh criterion, 63, 64
Rayleigh scattering, 68
Rayleigh wave, 223, 239
attenuation, 254
speed, 227
Reciprocal centimeter, 3
Recirculation region, 145
Reduced mass, 51
Reflectance, 13, 14
single-surface, 23, 27
total, 23
Reflection, 12, 13, 22, 195
microwave, 78
shock wave, 256-257
Refraction, 15
Refractive index, 15, 18, 22, 27, 196, 197, App. C
complex, 27
effect on scatter, 68
general behavior, 28-30
pressure effect, 18
relation to dielectric constant, 44, 77
temperature effect, 18
wavelength effect, 29
Reliability, 102-103, 107
REP coating, 248, 264-266
Residual strength, 225
static fatigue, 300
Residual stress, 217
Resistance, 208
Resistivity, 207
thermal, 131
Resolution, 63, 64
Resonant mesh, 212
Restrahlen frequencies, 29
RF shielding, 207-212
Ring fracture, 239
Ring-on-ring flexure test, 92-94, 95
River mark, 94, 95
Rocket sled, 216
Root-mean-square, 178
Roughness, 178, 179
Ruby, 187
Rugate filter, 203-203
Sabot, 240
Safety factor, 101-103, 109-110
Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 17 Aug 2019
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use
<table>
<thead>
<tr>
<th>Index</th>
<th>411</th>
</tr>
</thead>
<tbody>
<tr>
<td>Salt spray test, 202</td>
<td>temp./absorption, 43</td>
</tr>
<tr>
<td>Sand erosion, 243-248</td>
<td>temp./emission, 44</td>
</tr>
<tr>
<td>AR coatings, 269</td>
<td>temp./strength, 107, 108</td>
</tr>
<tr>
<td>coating resistance, 260</td>
<td>temp./toughness, 121</td>
</tr>
<tr>
<td>diamond, 334</td>
<td>temp./transmittance, 42</td>
</tr>
<tr>
<td>effect on strength, 244</td>
<td>thermal conduct., 128</td>
</tr>
<tr>
<td>impact angle, 250</td>
<td>thermal properties, 397</td>
</tr>
<tr>
<td>protection by diamond, 272-273</td>
<td>thermal shock, 135</td>
</tr>
<tr>
<td>rate, 245-248</td>
<td>thermo-optic distortion, 330</td>
</tr>
<tr>
<td>sapphire, 334</td>
<td>transmission spectrum, 31</td>
</tr>
<tr>
<td>zinc sulfide, 334</td>
<td>transmission window, 56</td>
</tr>
<tr>
<td>Sapphire, 202, App. C</td>
<td>transmittance, 24</td>
</tr>
<tr>
<td>absorption coefficient, 30</td>
<td>upper temperature, 148</td>
</tr>
<tr>
<td>annealing, 187-188</td>
<td>uv-visible transmiss., 34</td>
</tr>
<tr>
<td>birefringence, 19</td>
<td>vacuum uv grade, 174, 175</td>
</tr>
<tr>
<td>coated, 207, 255</td>
<td>Verneuil method, 172</td>
</tr>
<tr>
<td>conductive coating, 210</td>
<td>wind tunnel test, 139</td>
</tr>
<tr>
<td>crystal, 19</td>
<td>windows, 177</td>
</tr>
<tr>
<td>density, 114</td>
<td>Scaling factor, 99</td>
</tr>
<tr>
<td>diamond turning, 182</td>
<td>Scattering, 8, 14, 20, 21, 22, 64-68</td>
</tr>
<tr>
<td>dn/dT, 60, App. C</td>
<td>BTDF, 66</td>
</tr>
<tr>
<td>dome, 175, 176, 177</td>
<td>measurement, 65, 66</td>
</tr>
<tr>
<td>EFG method, 176</td>
<td>phonon, 320</td>
</tr>
<tr>
<td>elastic constants, 379</td>
<td>roughness, 178, 179</td>
</tr>
<tr>
<td>emittance, 41, 174, 175</td>
<td>total integrated, 65</td>
</tr>
<tr>
<td>expansion, 128</td>
<td>Schlieren pattern, 146</td>
</tr>
<tr>
<td>fiber strength, 177</td>
<td>Schott IRG100 (see IRG 100)</td>
</tr>
<tr>
<td>fract. toughness, 118, 207</td>
<td>Scooping, 174, 175</td>
</tr>
<tr>
<td>fundamental freq., 54</td>
<td>Scotch tape test, 202</td>
</tr>
<tr>
<td>growth and properties, 173-177</td>
<td>Scratch, 180, 244</td>
</tr>
<tr>
<td>hardness, 116</td>
<td>Scratch/dig specification, 180-181</td>
</tr>
<tr>
<td>heat capacity, 128</td>
<td>Seeker, 1</td>
</tr>
<tr>
<td>HEM grades, 174</td>
<td>Sellmeier equation, 18, 29</td>
</tr>
<tr>
<td>mesh, 212</td>
<td>Semiconductor, 46</td>
</tr>
<tr>
<td>microwave properties, 78, 80, 81</td>
<td>Separation shock, 145, 146</td>
</tr>
<tr>
<td>MIJA threshold, 239</td>
<td>Shear modulus, 87, 88, 381</td>
</tr>
<tr>
<td>modulus, 135</td>
<td>Shear stress, 87, 88</td>
</tr>
<tr>
<td>near-net-shape, 175-177</td>
<td>Shear wave, 222</td>
</tr>
<tr>
<td>nylon bead impact, 240</td>
<td>Sheet resistance, 208</td>
</tr>
<tr>
<td>plastic deform., 87, 91</td>
<td>Shielding effectiveness, 208</td>
</tr>
<tr>
<td>Poisson ratio, 135</td>
<td>Shock speed in water, 223</td>
</tr>
<tr>
<td>polishing, 183, 187</td>
<td>Shock wave, 145, 146</td>
</tr>
<tr>
<td>purity, 174</td>
<td>effect on rain, 241-243</td>
</tr>
<tr>
<td>rain damage threshold, 224, 226, 228</td>
<td>rain impact, 222</td>
</tr>
<tr>
<td>refractive index, 17, 22</td>
<td>sheer modulus, 145, 146</td>
</tr>
<tr>
<td>sand erosion, 246, 334</td>
<td>separation, 145, 146</td>
</tr>
<tr>
<td>scooping, 174, 175</td>
<td>velocity, 230</td>
</tr>
<tr>
<td>slow crack growth, 289-290</td>
<td>Sidewinder missile, 1</td>
</tr>
<tr>
<td>strain rate/strength, 98</td>
<td>Signal-to-noise degradation by hot window, 72</td>
</tr>
<tr>
<td>strength, 98, 105, 107, 108, 135</td>
<td>Silica</td>
</tr>
<tr>
<td>subsurface damage, 183, 184</td>
<td>antireflection coat, 197</td>
</tr>
<tr>
<td>refractive index, 17</td>
<td>transmission window, 56</td>
</tr>
<tr>
<td>silicon, App. C</td>
<td>2-color properties, 58</td>
</tr>
<tr>
<td>antireflection coat, 197</td>
<td>band gap, 46</td>
</tr>
<tr>
<td>carrier conc., 47</td>
<td>coated, 207</td>
</tr>
<tr>
<td>density, 114</td>
<td>diamond turning, 182</td>
</tr>
<tr>
<td>dn/dT, 60, App. C</td>
<td>elastic constants, 378</td>
</tr>
<tr>
<td>elastic, 135</td>
<td>expansion, 128</td>
</tr>
<tr>
<td>strength, 105, 135</td>
<td>fracture toughness, 118</td>
</tr>
<tr>
<td>temp./absorption coeff., 49</td>
<td>hardness, 117</td>
</tr>
<tr>
<td>temp./transmission, 48</td>
<td>heat capacity, 128</td>
</tr>
<tr>
<td>thermal conductivity, 128</td>
<td>thermal expansion, 318</td>
</tr>
<tr>
<td>thermal properties, 399</td>
<td>thermal shock, 135</td>
</tr>
<tr>
<td>thermal shock, 135</td>
<td>transmission spectrum, 33, 34, 198</td>
</tr>
<tr>
<td>transmission window, 56</td>
<td>transmittance, 24</td>
</tr>
<tr>
<td>upper temperature, 44, 46</td>
<td>uv-visible transmiss., 34</td>
</tr>
<tr>
<td>water cooled window, 74</td>
<td>Silicon carbide, 167-169,</td>
</tr>
<tr>
<td>App. C</td>
<td>absorption coefficient, 168-169</td>
</tr>
<tr>
<td>density, 114</td>
<td>elastic constants, 378</td>
</tr>
<tr>
<td>expansion, 128</td>
<td>fracture toughness, 118</td>
</tr>
<tr>
<td>hardness, 116</td>
<td>heat capacity, 128</td>
</tr>
<tr>
<td>modulus, 135</td>
<td>Poisson ratio, 135</td>
</tr>
<tr>
<td>Poisson ratio, 135</td>
<td>refractive index, 17</td>
</tr>
<tr>
<td>strength, 105, 135</td>
<td></td>
</tr>
</tbody>
</table>
Materials for Infrared Windows and Domes

thermal conductivity, 128
thermal expansion, 318
thermal shock, 135
transmission spectrum, 168
transmission window, 56
Silicon monoxide, 197
Silicon nitride, 169, App. C
coating material, 207
density, 114
expansion, 128
fracture toughness, 118
grain boundary, 151-152
hardness, 117
heat capacity, 128
microwave properties, 80
modulus, 135
Poisson ratio, 135
rain damage threshold, 226, 228
refractive index, 17
strength, 105, 120, 135, 186
thermal conductivity, 128
thermal shock, 135
transmission window, 56
Weibull curve, 101
Silver chloride
density, 117
expansion, 128
hardness, 117
heat capacity, 128
microwave properties, 80
modulus, 135
Poisson ratio, 135
rain damage threshold, 226, 228
refractive index, 17
strength, 105, 120, 135, 186
thermal conductivity, 128
thermal shock, 135
transmission window, 56
single crystal, 21, 66, 150-152, 170ff
single-impact waterjet, 235-236, 240
single-point diamond turning, 181-182
single-surface reflectance, 23
sintering, 156, 157, 159-161
sintering aid, 159
Skin
Skin depth, 209
slanted window, 145
slid test, 216
slow crack growth, 285-290
slurry, 156
Snell's law, 15
Snow, 6-11
Sodium chloride, App. C
crystal growth, 171
density, 114
dn/dT, 60, App. C
elastic constants, 378
expansion, 128
hardness, 117
heat capacity, 128
Index

intensity factor, 284-285
notation, 374
shear, 374
Strontium fluoride, 105, 185
Subcritical crack growth, 98, 217
Subsurface damage, 183-185
Surface absorption, 13, 39, 323-324
Surface energy, 96
Surface finish effect on strength, 183-188
Surface profile, 179
Surface roughness, 178, 179 coating, 202
Surface scatter, 22
Syndite, 305

Talc hardness, 116
Tape test, 202
Temperature absorption, 42-45 atmosphere, 142 crack growth, 290 dielectric constant, 81 emittance, 4, 42-45 fracture toughness, 121 grain growth, 160 hardness, 121 loss tangent, 81 modulus, 88 rain damage, 235 refractive index, 18, 25-26 sintering, 156, 160 stagnation, 45, 112 strength, 107 surface absorption, 39 transmission, 48-49 wavefront effect, 74-76

Tensile specimen, 84
Terminal velocity, 219
Thallium bromide, 57
Theoretical strength, 96
Thermal conductivity, 73ff, App. G anisotropy, 319 grain size effect, 320 temperature effect, 320
Thermal contraction, 126
Thermal decomposition, 147
Thermal diffusivity, 129
Thermal expansion, 126, App. G coating, 205 coefficient, 391
Thermal properties, App. G

Thermal resistivity, 131
Thermal shock, 132-144 figure of merit, 132, 135, 137, 140
Thermal stability, 145-148 Thermal stress, dome, 138-139 Thermally thick dome, 134 Thermally thin dome, 134 Thermogravimetric analysis, 335 Thermo-optic distortion, 330

Thickness dome, 141 effect on erosion protection, 253 measurement, 201-202 window design, 109-110 Thorium fluoride, 196, 197, 198 Thorium oxide, 197 Thorium oxyfluoride, 205

Three-point flexure test, 89 Time to failure, 295-296, 300 TO, 51 Topaz, 116 Torr, 345 Total integrated scatter, 65, 178, 179

Total reflectance, 23 Toughening, 154 Toughness, 118 Transmission, 12, 13 atmospheric, 3 conductive coat, 209-210 dust, 6-11 fog, 6-11 rain, 6-11 rain impact effect, 228-231 snow, 6-11 spectra, 31-33 window, 41, 56-57 Transmittance, 6, 13-14, 23-24 etalon effect, 25-26 external, 13 in-line, 13 internal, 12, 13 Transverse oscillation, 51, 52 Transverse wave, 222 Transverse wave velocity, 230

Tuftran, 165-167, 217, 257, 266

Two-color materials, 58-59 Type I/II diamond, 304

Ultraviolet degradation of polyethylene, 189-190
Ultraviolet-visible transmission spectra, 34-35 Umklapp process, 320 Unclamped window, 109 Uniaxial pressing, 161 Urbach tail, 29, 30

Vacuum ultraviolet region, 174
Valence band, 46
Vapor pressure, H2O in air, 9
Velocity of shock wave, 230
Verneuil method, 172
Vibration energy level, 50
Vibrational quantum number, 50
Vickers indentor, 114, 115
Viscosity, atmosphere, 142
Visibility, 10
Visible light, 2
Visible transmission spectra, 34-35
Void, effect on scatter, 68
Volume, effect on strength, 103-104

Water, absorption bands, 3
Water cooling of window, 74
Water hammer pressure, 223
Waterclear zinc sulfide, 59, 164
Waterjet, 235-239, 332-333
Watt, 345
Wavelength, 2 free carrier effect, 47
in matter, 78

Wavenumber, 3
Waviness, 178
Weakest link, 382
Weibull critical stress, 383
Weibull distribution, 99, App. F

Weibull modulus, 99, 383
Weibull probability, 383
Weibull scaling factor, 383
Weibull statistics, 98-104
Wein displacement law, 4
Whirling arm, 233-235
Wind tunnel, 137-139
Index

thermal conduct., 128
thermal expansion, 318
thermal properties, 402
thermal resistivity, 131
thermal shock, 135
thermo-optic distortion, 330
transmission loss, 147
transmission spectrum, 32, 165
transmission window, 56
transmittance, 24
Tuftran, 165-167
upper temperature, 148
uv-visible transmis., 34
Waterclear, 59, 164
Weibull curve, 100
wind tunnel test, 139
Zirconia, App. C
antireflection coat, 197
nylon bead impact, 240
refractive index, 17
temp./hardness, 121
transmission window, 56
yttria-stabilized, 121
Zirconium fluoride, 197
Zirconium tungstate, 126
ZPBSN, 80
Daniel C. Harris is a Senior Scientist in the Chemistry and Materials Division of the Research Department at the Naval Air Warfare Center at China Lake, California, where his specialty is infrared window and dome materials. He holds a Bachelor's degree in chemistry from Massachusetts Institute of Technology and a Ph.D. in chemistry from California Institute of Technology. Prior to coming to the Naval Air Warfare Center in 1983, he taught at the University of California at Davis and Franklin and Marshall College in Lancaster, Pennsylvania. He is the author of the widely used undergraduate analytical chemistry text, *Quantitative Chemical Analysis* (5th edition, 1998), and has also written the textbook *Exploring Chemical Analysis* and co-authored *Symmetry and Spectroscopy*. On those very rare occasions when he is not at his desk or in an airport, he can be found hiking under the blue California sky.