INDEX

Abrasion test, 202
Abrasive, 181
Abrasive liquid jet machining, 332
Absolute damage threshold velocity (ADTV), 239
Absorptance, 13, 14, 30 coating, 203
Absorption
extrinsic, 30
free carrier, 46-47
surface, 13
wavelength effect, 30
Absorption coefficient, 13,
14, App. C
general behavior, 28-30
measuring, 36-39
relation to k, 27
silicon, 49
surface, 39
temperature effect, 49
Acetylene torch reactor, 308
Acoustic impedance, 256
Acoustic mode, 51, 52
Acoustic wave, 129
Adhesion test, 202
Adhesive for cladding, 256-
257, 266-267
ADTV, 239
Aero-optic distortion, 144
Aerodisk, 145, 146
Aerodynamic dome, 144-145
Aerodynamic effect on rain erosion, 241-243
Aerospike, 145, 146
Agglomerate, 156
Air, heat capacity, 141
(see also atmosphere)
Aircraft window reliability, 298
Airstream characteristics, 112, 142
Airy disk, 63
density, 114
dn/dT, 60, App. C elastic constants, 378, 380
emittance, 41
expansion, 128
fabrication, 158
fract. toughness, 118, 207
fundamental freq., 54
hardness, 117
heat capacity, 128
microwave absorption, 78
microwave properties, 80, 81
modulus, 135
MTF, 70
nylon bead impact, 240
Poisson ratio, 135
refractive index, 17
sand erosion, 247
strength, 105, 135
temp./emission, 44
thermal conduct., 128
thermal properties, 392
thermal shock, 135
transmission spectrum, 31
transmission window, 56
transmittance, 24
upper temperature, 148
uv-visible transmis., 34
wind tunnel test, 139
Altitude effect on atmosphere properties, 142
Alumina
antireflection coat, 197
coating, 207
grain size/strength, 120
microwave properties, 81
refractive index, 17
scatter, 68
static fatigue, 299-300
Aluminum fluoride, 197
Aluminum gallium phosphide, 264
Aluminum nitride, App. C absorption spectrum, 54
antireflection coat, 197
density, 114
expansion, 128
fundamentals, 54
heat capacity, 128
modulus, 135
Poisson ratio, 135
refractive index, 17
strength, 135
thermal conduct., 128, 132
thermal shock, 135
Aluminum oxynitride (see ALON)
Amorphous diamond, 258, 259
Amorphous material, 51
AMTIR, 150, App. C
density, 114
elastic constants, 380
eexpansion, 128
heat capacity, 128
identification, 18
refractive index, 17
thermal conduct., 128
Angle of incidence, 15
effect in erosion, 249-252
Angle of refraction, 15
Ångstrom, 345
Anisotropic material, 19
Annealing, 160, 162-163
effect on strength, 187
Antireflection coat, 24, 195
microwave, 200-201
moth eye, 199
sand erosion, 247
Apatite hardness, 116
Aperture, 64
Arc jet reactor, 308
Area, effect on strength, 103, 106-107
Arsenic (tri)selenide, 197
Arsenic (tri)sulfide, 150, App. C coating material, 197
rain damage threshold, 230
transmission window, 56
Atmosphere, 3
density, 142
heat capacity, 141
pressure, 142
pressure unit, 345
speed of sound, 142
temperature, 142
transmission, 7
viscosity, 142
Attenuation coefficient, 7, 8
Avogadro's number, 344
Ball-on-ring flexure test, 104
Band gap, 46
Bar, 345
Barium fluoride, App. C coating material, 197
density, 114
eelastic constants, 378
hardness, 117
refractive index, 17
strength, 105
transmission window, 57
Barium gallo-germanate, 154
Bending test, 89-94
Berkovich indentor, 115
Beryllium oxide, App. C

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 12 Feb 2020
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use
microwave properties, 81
refractive index, 17
BGGO glass, 154
Biaxial modulus, 206
Bidirectional transmittance
distribution function
(BTDF), 66
Binder, 156
Biot number, 132-134
Birefringence, 19, 20
BK-7 glass, 18, 298
elastic constants, 380
fract. toughness, 118
sand erosion, 244
Blackbody, 3
Blackbody photon flux, 73
Bohr magneton, 344
Boltzmann's const., 4, 344
Borax, 187
Boron carbide hardness, 116
Boron nitride, App. C
hardness, 116
microwave properties, 80
Boron phosphide, App. C
coating, 259-264
elastic constants, 378
expansion, 128
heat capacity, 128
MIJA threshold, 261
refractive index, 17
sand erosion, 260
thermal conduct., 128
transmission, 260, 261
Boundary, grain, 21, 96,
151-152
Bow shock wave, 145, 146
Braze, 266
Bridgman growth, 170
British thermal unit, 345
Brittle behavior, 85
BS37A, 18
BS39B, 18, 380
BTDF, 66
BTU, 345
Bug impact damage, 217
Bulk absorption, 323-324
Bulk modulus, 87, 88, 381
Bulletproof window, 159
Buried crack, 254
Buried mesh, 212
Burnout, 156

Cadmium sulfide, App. C
density, 114
refractive index, 17
transmission window, 57
Cadmium telluride
elastic constants, 378
transmission window, 57
Calcite, 19, 20, 116
Calcium aluminate, 18, 150,
154, App. C
density, 114
expansion, 128
heat capacity, 128
microwave properties, 80
sand erosion, 247
thermal conduct., 128
transmission spectrum, 31
transmission window, 56
Calcium carbonate (calcite),
20
Calcium fluoride, App. C & D
elastic constants, 378
expansion, 128
hardness, 117
heat capacity, 128
microwave e/\tan\theta, 80
modulus, 135
Poisson ratio, 135
polishing, 181
refractive index, 17
strength, 105, 135, 185
thermal conduct., 128, 130
thermal properties, 392
thermal shock, 135
transmission, 32, 34
transmission window, 56
Calcium lanthanum sulfide,
App. C
density, 114
elastic constants, 378
MIJA threshold, 239
sand erosion, 246
Calorie, 345
Calorimetry, 37
Cannon projectile, 113
Cantilever beam specimen,
286
Carat, 305
Carbon dioxide, absorption
bands, 3
Cellulofane tape test, 202
Ceramic failure, 94-96
Ceria antireflection coat, 197
Cesium bromide, App. C
density, 114
expansion, 128
hardness, 117
heat capacity, 128
refractive index, 17
thermal conduct., 128
transmission window, 56
Cesium iodide
elastic constants, 378
expansion, 128
grain size/strength, 120
heat capacity, 128
strength, 105
thermal conduct., 128
transmission window, 56
C-H absorption, 326-327
Chalcogenide, 266
Chalcogenide glass, 150
Chamfer, 92, 94
Chemical etching, 187
Chemical vapor deposition,
163ff, 306-309
Chemo-mechanical polishing, 181
Circular window design, 109-
110
Cladding, 255, 266-269
Clamped window, 109
Cleartran, 59, 96-97
Closed porosity, 156
Cloth, polyethylene, 189
Coating
absorptance, 203
aluminum gallium
phosphide, 264
antireflection, 195
boron phosphide, 259
claddings, 266
compliant, 255
diamond, 270
diamond-like carbon, 258
durability, 202
emittance, 202-203
erosion protection, 252-
273
gallium phosphide, 261
germanium-carbon, 258
graded index, 198-199
mechanism of protection, 252-257
moth eye, 199
optical constants, 202
oxidation resistant, 335
polymer, 268
REP, 248, 264
roughness, 202
sand erosion, 247
silicon, 266
strengthening, 255
stress, 205-207
thickness/erosion, 253
thickness measurement, 201-202
Coblentz sphere, 65
Coefficient of thermal expansion, 126
Cold isostatic pressing, 156
Colloidal silica, 181
Color, 2
Columnar growth, 310
Combination band, 51
Combined effects (sand and rain erosion), 248
Comparative erosion testing, 250-252
Compax, 305
Complex refractive index, 27
Compliance coefficients, 376, 378
Compliant adhesive, 256-257
Compliant coating, 255
Compression wave, 222
Conduction band, 46
Conductive coating, 207-212
Conductive mesh, 212
Conductivity
electrical, 209
thermal, 128-132
Cone of acceptance, 16
Contact diameter, 224
Conversion factors, 345
Cooling channel, 74
Copper, 130, 319, 327
Core drilling, 188
Corning 0160 dome, 215
Corning 9754 glass, 18, density, 114
electric constants, 380
expansion, 128
heat capacity, 128
thermal conductivity, 128
thermal conduct., 128
Corundum (see sapphire)
Cosmic ray, 2
Cost of fabrication, 155
Crack, buried, 254
Crack growth, 98, 217, 285-290
Critical angle, 16
Critical flaw, 95-98
Critical stress intensity, 118
Cryolite, 202
Crystal, 150-151
CTE, 126
Cubic material, 20
Curvature, 183
Cutoff frequency, 70
Czochralski growth, 170, 171
Damage parameter, rain impact, 227, 228
damage threshold velocity, 224-232
diamond, 332
diamond coatings, 270
dropsize effect, 226
equation, 227
DAR coating, 248, 260, 264-266
dB (decibel), 7
DC torch reactor, 307
Decaglomeration, 156
Decibel, 7, 209
Decomposition, 147
Deflection,
end bar test, 91
coating, 205-207
disk flexure test, 93
Denier, 189
Density
atmosphere, 142
window materials, 114
Design of window/dome, 109-113
Design safety factor, 101-103, 109-110
DI-100/200, 80
abrasive liquid jet machining, 332
absorption coefficient, 14, 39, 322-325
acetylene torch, 308
antireflection coat, 197, 199, 329
carbide jet, 308
atom density, 304
boron, 304-305, 336
CH absorption, 326-327
chemical vapor deposition, 306-309
cutting, 270-273, 303
color, 304
commercial grades, 321
critical flaw size, 317
crystal structure, 304
cutting tools, 305, 312
damage threshold, 333
dc torch, 307
density, 114, 320
dielectric constant, 311
dielectric properties, 328-329
dissolution in hot metals, 331-332
dn/dT, 60, 327-328, App. C
dome, 330, 331
electric constants, 313, 378, 380
electrochemical machining, 332
emittance, 323, 325
erosion, 332-334
expansion, 128, 311, 317-318
flaws, 316
fract. toughness, 118, 313
graphitization, 305
growth rate, 306, 308
growth stress, 317
hardness, 116, 311, 312
heat capacity, 128, 320
hot filament, 307
hydrogen, 327
ion beam shaping, 332
isotope effect, 320
laser machining, 331
laser window, 330
loss tangent, 311, 329
mechanical grade, 321
mechanical strength, 313-315
metal-induced nucleation, 308
microstructure, 309, 310, 311
microwave properties, 80, 81, 328-329
MIJA threshold, 239
MTF, 331
modulus, 135, 311, 313
moth eye, 199
multisol phosphate, 58
nitrogen, 304-305
nucleation, 309
optical absorption, 322-325
optical constants, 28
optical grade, 321
oxidation, 334-336
patent, 309
phase diagram, 305
Poison ratio, 135, 311
polishing, 330-332
polycrystalline, 305
preferential growth orientation, 309
rain damage threshold, 228
rear surface erosion failure, 332-333
reflectance, 325
Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 12 Feb 2020
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use
<table>
<thead>
<tr>
<th>Term</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diamond, continued</td>
<td>refractive index, 17, 327-328</td>
</tr>
<tr>
<td></td>
<td>release layer, 309</td>
</tr>
<tr>
<td></td>
<td>resistivity, 304-305</td>
</tr>
<tr>
<td></td>
<td>sand erosion, 246, 247, 248, 272-273, 312, 334</td>
</tr>
<tr>
<td></td>
<td>scatter, 325-326</td>
</tr>
<tr>
<td></td>
<td>spontaneous fracture, 317</td>
</tr>
<tr>
<td></td>
<td>sputtered interlayer, 308</td>
</tr>
<tr>
<td></td>
<td>strength, 105, 311</td>
</tr>
<tr>
<td></td>
<td>substrates, 307, 308</td>
</tr>
<tr>
<td></td>
<td>surface absorption, 14, 323-324</td>
</tr>
<tr>
<td></td>
<td>temperatures effect on absorption, 324-325</td>
</tr>
<tr>
<td></td>
<td>thermal conductivity, 128, 311, 318-320, 393</td>
</tr>
<tr>
<td></td>
<td>thermal expansion, 128, 311, 317-318</td>
</tr>
<tr>
<td></td>
<td>thermal grade, 321</td>
</tr>
<tr>
<td></td>
<td>thermal shock, 135, 311</td>
</tr>
<tr>
<td></td>
<td>thermo-optic distortion, 330</td>
</tr>
<tr>
<td></td>
<td>transmiss. window, 56, 321</td>
</tr>
<tr>
<td></td>
<td>types, 304</td>
</tr>
<tr>
<td></td>
<td>ultraviolet absorp., 326</td>
</tr>
<tr>
<td></td>
<td>window, 303, 329-336</td>
</tr>
<tr>
<td></td>
<td>ZnS composite, 165-167</td>
</tr>
<tr>
<td>Diamond-like carbon (DLC),</td>
<td>197, 258, 259</td>
</tr>
<tr>
<td>Diamond turning</td>
<td>181-182</td>
</tr>
<tr>
<td>Dielectric constant</td>
<td>44, 77</td>
</tr>
<tr>
<td>Diffraction</td>
<td>63</td>
</tr>
<tr>
<td>Diffraction limited</td>
<td>63</td>
</tr>
<tr>
<td>Diffuse reflection</td>
<td>22</td>
</tr>
<tr>
<td>Diffusivity, thermal</td>
<td>129</td>
</tr>
<tr>
<td>Dig</td>
<td>180</td>
</tr>
<tr>
<td>Dilatational wave</td>
<td>222</td>
</tr>
<tr>
<td>Dilational wave</td>
<td>222</td>
</tr>
<tr>
<td>Dimpling</td>
<td>185</td>
</tr>
<tr>
<td>Dipole moment</td>
<td>57</td>
</tr>
<tr>
<td>Dispersant</td>
<td>156</td>
</tr>
<tr>
<td>Dispersion, 18, App. C</td>
<td>normal, 29, 30</td>
</tr>
<tr>
<td>DLC (see diamondlike carbon),</td>
<td>dn/dP, 18</td>
</tr>
<tr>
<td></td>
<td>dn/dT, 18, 25-26, 60</td>
</tr>
<tr>
<td>Dome</td>
<td>aerodynamic, 144-145</td>
</tr>
<tr>
<td></td>
<td>blank, 157</td>
</tr>
<tr>
<td></td>
<td>core drilled, 188</td>
</tr>
<tr>
<td></td>
<td>diamond, 330, 331</td>
</tr>
<tr>
<td></td>
<td>design, 111-113</td>
</tr>
<tr>
<td></td>
<td>missile, 1, 136</td>
</tr>
<tr>
<td></td>
<td>near-net-shape, 175</td>
</tr>
<tr>
<td>rain erosion, 215</td>
<td></td>
</tr>
<tr>
<td>scatter, 66</td>
<td></td>
</tr>
<tr>
<td>scooter, 174, 175</td>
<td></td>
</tr>
<tr>
<td>strength, 188</td>
<td></td>
</tr>
<tr>
<td>stress, 136</td>
<td></td>
</tr>
<tr>
<td>temperature, 136</td>
<td></td>
</tr>
<tr>
<td>thermal shock, 138, 139</td>
<td></td>
</tr>
<tr>
<td>thermal stress, 138-139</td>
<td></td>
</tr>
<tr>
<td>thickness, 141</td>
<td></td>
</tr>
<tr>
<td>Double cantilever specimen, 286</td>
<td></td>
</tr>
<tr>
<td>DROPs computer code, 243</td>
<td></td>
</tr>
<tr>
<td>Dropsize effect on damage threshold, 226</td>
<td></td>
</tr>
<tr>
<td>Dual threshold, erosion, 263</td>
<td></td>
</tr>
<tr>
<td>Ductile behavior, 85</td>
<td></td>
</tr>
<tr>
<td>Duriod, 80</td>
<td></td>
</tr>
<tr>
<td>Dust, 6-11</td>
<td></td>
</tr>
<tr>
<td>Dynamic fatigue, 281</td>
<td></td>
</tr>
<tr>
<td>Dyno, 345</td>
<td></td>
</tr>
<tr>
<td>Effective area, 104, 384</td>
<td></td>
</tr>
<tr>
<td>Effective volume, 384</td>
<td></td>
</tr>
<tr>
<td>EFG method, 176</td>
<td></td>
</tr>
<tr>
<td>Elastic behavior, 85</td>
<td></td>
</tr>
<tr>
<td>Elastic constants, 84-88, App. E</td>
<td></td>
</tr>
<tr>
<td>Elastic limit, 105</td>
<td></td>
</tr>
<tr>
<td>Electrochemical machining, 332</td>
<td></td>
</tr>
<tr>
<td>Electron magnetic moment, 344</td>
<td></td>
</tr>
<tr>
<td>Electron mass, 344</td>
<td></td>
</tr>
<tr>
<td>Electron volt, 326, 345</td>
<td></td>
</tr>
<tr>
<td>Electronic transitions, 29</td>
<td></td>
</tr>
<tr>
<td>Elemental zinc sulfide, 59, 165-166</td>
<td></td>
</tr>
<tr>
<td>Elementary charge, 344</td>
<td></td>
</tr>
<tr>
<td>Emissivity, 39-42</td>
<td></td>
</tr>
<tr>
<td>Emittance, 4, 39, 71</td>
<td></td>
</tr>
<tr>
<td>coating, 202-203, 263</td>
<td></td>
</tr>
<tr>
<td>Energy of light, 2</td>
<td></td>
</tr>
<tr>
<td>Engineering strain, 375</td>
<td></td>
</tr>
<tr>
<td>Equibiaxial flexure test, 92-94, 95</td>
<td></td>
</tr>
<tr>
<td>Equivalent drop size, 236-237</td>
<td></td>
</tr>
<tr>
<td>waterjet, 236-237</td>
<td></td>
</tr>
<tr>
<td>Eraser test, 202</td>
<td></td>
</tr>
<tr>
<td>Erg, 345</td>
<td></td>
</tr>
<tr>
<td>Erosion, 215-273</td>
<td></td>
</tr>
<tr>
<td>angle incidence, 249-252</td>
<td></td>
</tr>
<tr>
<td>comparative, 250-252</td>
<td></td>
</tr>
<tr>
<td>diamond, 332-334</td>
<td></td>
</tr>
<tr>
<td>moth eye, 333</td>
<td></td>
</tr>
<tr>
<td>solid particle, 243-248</td>
<td></td>
</tr>
<tr>
<td>window lifetime, 298</td>
<td></td>
</tr>
<tr>
<td>Etalon, 25-26</td>
<td></td>
</tr>
<tr>
<td>Etching, 187</td>
<td></td>
</tr>
<tr>
<td>Exitance, 4-6, 372</td>
<td></td>
</tr>
<tr>
<td>Expansion coeff., 126, 391</td>
<td></td>
</tr>
<tr>
<td>Exploding wire, 240</td>
<td></td>
</tr>
<tr>
<td>External transmittance, 13</td>
<td></td>
</tr>
<tr>
<td>Extinction coefficient, 27, 168, 322</td>
<td></td>
</tr>
<tr>
<td>Extraordinary direction, 19</td>
<td></td>
</tr>
<tr>
<td>Extrinsic property, 30</td>
<td></td>
</tr>
<tr>
<td>F number, 63, 70</td>
<td></td>
</tr>
<tr>
<td>Fabrication, polycrystalline material, 155-158</td>
<td></td>
</tr>
<tr>
<td>Factorial function, 386</td>
<td></td>
</tr>
<tr>
<td>Faraday constant, 344</td>
<td></td>
</tr>
<tr>
<td>Fatigue, 299-300</td>
<td></td>
</tr>
<tr>
<td>Feldspar hardness, 116</td>
<td></td>
</tr>
<tr>
<td>Fiber, 16</td>
<td></td>
</tr>
<tr>
<td>Fiber strength, sapphire, 177</td>
<td></td>
</tr>
<tr>
<td>Figure of merit, thermal shock, 132, 135, 137, 140</td>
<td></td>
</tr>
<tr>
<td>Filter, Rugate, 203-204</td>
<td></td>
</tr>
<tr>
<td>Finish, effect on strength, 183-188</td>
<td></td>
</tr>
<tr>
<td>Finishing, 177-188</td>
<td></td>
</tr>
<tr>
<td>Flame fusion, 172</td>
<td></td>
</tr>
<tr>
<td>Flame polishing, 187</td>
<td></td>
</tr>
<tr>
<td>Flat plate transmittance and reflectance, 23, 24</td>
<td></td>
</tr>
<tr>
<td>Flatness, 182</td>
<td></td>
</tr>
<tr>
<td>Flaw size, 119</td>
<td></td>
</tr>
<tr>
<td>Flexure specimen, 385</td>
<td></td>
</tr>
<tr>
<td>Flexure strength, 89</td>
<td></td>
</tr>
<tr>
<td>Flexure test, 89-94</td>
<td></td>
</tr>
<tr>
<td>FLIR grade ZnS, 164</td>
<td></td>
</tr>
<tr>
<td>Float polishing, 181</td>
<td></td>
</tr>
<tr>
<td>Float zone method, 171-172</td>
<td></td>
</tr>
<tr>
<td>Fluoride glass, 150</td>
<td></td>
</tr>
<tr>
<td>Fluorite, 116</td>
<td></td>
</tr>
<tr>
<td>Fluorocarbon polymer antireflection coat, 197</td>
<td></td>
</tr>
<tr>
<td>Fog, 6-11</td>
<td></td>
</tr>
<tr>
<td>Foot-pound, 345</td>
<td></td>
</tr>
<tr>
<td>Force constant, 50</td>
<td></td>
</tr>
<tr>
<td>Four-point flexure test, 90</td>
<td></td>
</tr>
<tr>
<td>Fractography, 95</td>
<td></td>
</tr>
<tr>
<td>Fracture mirror, 94</td>
<td></td>
</tr>
<tr>
<td>Fracture modes, 118</td>
<td></td>
</tr>
<tr>
<td>Fracture strength rain damage, 225, 227</td>
<td></td>
</tr>
<tr>
<td>Fracture toughness, 118</td>
<td></td>
</tr>
<tr>
<td>effect on strength, 119</td>
<td></td>
</tr>
<tr>
<td>rain damage threshold, 227, 228</td>
<td></td>
</tr>
<tr>
<td>Term</td>
<td>Page(s)</td>
</tr>
<tr>
<td>---</td>
<td>---------</td>
</tr>
<tr>
<td>Free carrier absorption</td>
<td>46-47</td>
</tr>
<tr>
<td>Free spectral range</td>
<td>26</td>
</tr>
<tr>
<td>Free-stream pressure</td>
<td>111</td>
</tr>
<tr>
<td>Frequency, spatial</td>
<td>31</td>
</tr>
<tr>
<td>Frequency doubling, 76-77</td>
<td></td>
</tr>
<tr>
<td>Fringe, 183, 201-202</td>
<td></td>
</tr>
<tr>
<td>Fundamental transition</td>
<td>51</td>
</tr>
<tr>
<td>Fused silica, App. C</td>
<td></td>
</tr>
<tr>
<td>density</td>
<td>114</td>
</tr>
<tr>
<td>dn/dT, 60, App. C</td>
<td></td>
</tr>
<tr>
<td>elastic constants</td>
<td>378</td>
</tr>
<tr>
<td>expansion</td>
<td>128</td>
</tr>
<tr>
<td>fract. toughness</td>
<td>118</td>
</tr>
<tr>
<td>hardness</td>
<td>117</td>
</tr>
<tr>
<td>heat capacity</td>
<td>128</td>
</tr>
<tr>
<td>ice particle erosion</td>
<td>243</td>
</tr>
<tr>
<td>microwave properties</td>
<td>81</td>
</tr>
<tr>
<td>modulus, 87, 135</td>
<td></td>
</tr>
<tr>
<td>Poisson ratio</td>
<td>135</td>
</tr>
<tr>
<td>refractive index</td>
<td>17</td>
</tr>
<tr>
<td>strength, 105, 135</td>
<td></td>
</tr>
<tr>
<td>thermal conduct.</td>
<td>128, 130</td>
</tr>
<tr>
<td>thermal shock</td>
<td>135</td>
</tr>
<tr>
<td>transmission spectrum</td>
<td>31</td>
</tr>
<tr>
<td>transmission window</td>
<td>56</td>
</tr>
<tr>
<td>uv-visible transmis.</td>
<td>34</td>
</tr>
<tr>
<td>Gallium arsenide, App. C, App. D</td>
<td></td>
</tr>
<tr>
<td>2-color properties</td>
<td>59</td>
</tr>
<tr>
<td>absorption coeff.</td>
<td>211</td>
</tr>
<tr>
<td>antireflection coat</td>
<td>197</td>
</tr>
<tr>
<td>band gap</td>
<td>46</td>
</tr>
<tr>
<td>carrier conc., 47</td>
<td></td>
</tr>
<tr>
<td>coating, 260-264</td>
<td></td>
</tr>
<tr>
<td>crystal growth</td>
<td>171</td>
</tr>
<tr>
<td>density, 114</td>
<td></td>
</tr>
<tr>
<td>deposition, 163</td>
<td></td>
</tr>
<tr>
<td>dn/dT, 27, 60, App. C</td>
<td></td>
</tr>
<tr>
<td>elastic constants</td>
<td>378</td>
</tr>
<tr>
<td>expansion</td>
<td>128</td>
</tr>
<tr>
<td>fracture toughness</td>
<td>118</td>
</tr>
<tr>
<td>hardness</td>
<td>117</td>
</tr>
<tr>
<td>heat capacity</td>
<td>128</td>
</tr>
<tr>
<td>modulus, 135</td>
<td></td>
</tr>
<tr>
<td>MTF, 71</td>
<td></td>
</tr>
<tr>
<td>Poisson ratio</td>
<td>135</td>
</tr>
<tr>
<td>rain damage threshold</td>
<td>228</td>
</tr>
<tr>
<td>refractive index</td>
<td>17, 27</td>
</tr>
<tr>
<td>strength, 105, 109, 135</td>
<td></td>
</tr>
<tr>
<td>temp./absorption</td>
<td>49</td>
</tr>
<tr>
<td>temperature limit</td>
<td>46</td>
</tr>
<tr>
<td>temp./strength</td>
<td>109</td>
</tr>
<tr>
<td>thermal conduct.</td>
<td>128</td>
</tr>
<tr>
<td>thermal expansion</td>
<td>318</td>
</tr>
<tr>
<td>thermal properties</td>
<td>394</td>
</tr>
<tr>
<td>thermal shock</td>
<td>135</td>
</tr>
<tr>
<td>transmission spectrum</td>
<td>33</td>
</tr>
<tr>
<td>transmission window</td>
<td>56</td>
</tr>
<tr>
<td>uv-visible transmis.</td>
<td>34</td>
</tr>
<tr>
<td>Gallium phosphide, App. C, App. G</td>
<td></td>
</tr>
<tr>
<td>Gamma function</td>
<td>386</td>
</tr>
<tr>
<td>Gamma ray</td>
<td>2</td>
</tr>
<tr>
<td>Gas constant</td>
<td>344</td>
</tr>
<tr>
<td>Geology hardness scale</td>
<td>116</td>
</tr>
<tr>
<td>Germanate glass, 139, 150, 230, App. C</td>
<td></td>
</tr>
<tr>
<td>Germanium, App. C, App. G</td>
<td></td>
</tr>
<tr>
<td>2-color properties</td>
<td>58</td>
</tr>
<tr>
<td>absorption coeff.</td>
<td>211</td>
</tr>
<tr>
<td>antireflection coat</td>
<td>197</td>
</tr>
<tr>
<td>band gap</td>
<td>46</td>
</tr>
<tr>
<td>carrier conc., 47</td>
<td></td>
</tr>
<tr>
<td>coated, 207</td>
<td></td>
</tr>
<tr>
<td>conductive</td>
<td>211</td>
</tr>
<tr>
<td>crystal growth</td>
<td>171</td>
</tr>
<tr>
<td>damage threshold</td>
<td>259</td>
</tr>
<tr>
<td>density, 114</td>
<td></td>
</tr>
<tr>
<td>diamond turning</td>
<td>182</td>
</tr>
<tr>
<td>dn/dT, 60, App. C</td>
<td></td>
</tr>
<tr>
<td>elastic constants</td>
<td>378</td>
</tr>
<tr>
<td>expansion</td>
<td>128</td>
</tr>
<tr>
<td>fract. toughness</td>
<td>118, 207</td>
</tr>
<tr>
<td>hardness</td>
<td>117</td>
</tr>
<tr>
<td>heat capacity</td>
<td>128</td>
</tr>
<tr>
<td>illumination effect</td>
<td>47, 50</td>
</tr>
<tr>
<td>MIJA threshold</td>
<td>239</td>
</tr>
<tr>
<td>modulus, 135</td>
<td></td>
</tr>
<tr>
<td>Poisson ratio</td>
<td>135</td>
</tr>
<tr>
<td>polycrystalline</td>
<td>171</td>
</tr>
<tr>
<td>rain damage threshold</td>
<td>228, 230, 235</td>
</tr>
<tr>
<td>reflectance</td>
<td>23-24</td>
</tr>
<tr>
<td>refractive index</td>
<td>17</td>
</tr>
<tr>
<td>sand erosion</td>
<td>24-24</td>
</tr>
<tr>
<td>strength, 105, 135</td>
<td></td>
</tr>
<tr>
<td>temperature limit</td>
<td>46</td>
</tr>
<tr>
<td>temp./transmission</td>
<td>48</td>
</tr>
<tr>
<td>thermal conduct.</td>
<td>128</td>
</tr>
<tr>
<td>thermal expansion</td>
<td>318</td>
</tr>
<tr>
<td>thermal properties</td>
<td>395</td>
</tr>
<tr>
<td>thermal shock</td>
<td>135</td>
</tr>
<tr>
<td>transmission spectrum</td>
<td>33</td>
</tr>
<tr>
<td>transmis. vs temp.</td>
<td>47</td>
</tr>
<tr>
<td>transmission window</td>
<td>56</td>
</tr>
<tr>
<td>transmittance</td>
<td>24</td>
</tr>
<tr>
<td>uv-visible transmis.</td>
<td>34</td>
</tr>
<tr>
<td>Germanium-carbon coating</td>
<td>258, 259</td>
</tr>
<tr>
<td>Glass, 21, 150-153</td>
<td></td>
</tr>
<tr>
<td>BGGO, 154</td>
<td></td>
</tr>
<tr>
<td>coated, 207</td>
<td></td>
</tr>
<tr>
<td>fract. toughness</td>
<td>207</td>
</tr>
<tr>
<td>rain damage threshold</td>
<td>226</td>
</tr>
<tr>
<td>reflectance</td>
<td>23-24</td>
</tr>
<tr>
<td>scatter, 66</td>
<td></td>
</tr>
<tr>
<td>slow crack growth</td>
<td>287</td>
</tr>
<tr>
<td>thermal conductivity</td>
<td>130</td>
</tr>
<tr>
<td>Glass-ceramic, 153-154</td>
<td></td>
</tr>
<tr>
<td>Graded-index coat, 198-199</td>
<td></td>
</tr>
<tr>
<td>Gradient solidification</td>
<td>175</td>
</tr>
<tr>
<td>Grain boundary, 21, 96, 151-152</td>
<td></td>
</tr>
<tr>
<td>Grain growth</td>
<td>157, 159, 160</td>
</tr>
<tr>
<td>Grain size, strength effect</td>
<td>119, 314</td>
</tr>
<tr>
<td>Graphite, 161, 304</td>
<td></td>
</tr>
<tr>
<td>Graphitization</td>
<td>305</td>
</tr>
<tr>
<td>Gravitational acceleration</td>
<td>344</td>
</tr>
<tr>
<td>Gravitational constant</td>
<td>344</td>
</tr>
<tr>
<td>GRC rain test facility</td>
<td>240</td>
</tr>
<tr>
<td>Green body</td>
<td>156</td>
</tr>
<tr>
<td>Griffith strength relation</td>
<td>97</td>
</tr>
</tbody>
</table>
Grinding, 181
Grinding damage, 184-188
Grocery scanner window, 176
Ground state, 51
Growth stress, 317
Gypsum hardness, 116

Hafnia coating, 197
Half-penny crack, 114
Hard carbon coating, 258
Hardening, 117
Hardness, 114, 121
Harmonic oscillator, 50
Hasselman figure of merit, 133, 134ff
Heat capacity, 127, App. G
Heat exchanger method, 173
Heat flux, 128, 141
Heat-seeking missile, 1
Heat transfer coefficient, 45, 133, 141
Heat transfer, radiant, 130
Hemispheric emissivity, 40
HIP, 157
Hoop stress, 92-93
Horsepower, 345
Hot filament reactor, 307
Hot forging, 177, 178
Hot isostatic pressing, 157, 161
Hot pressing, 161
Hot window effects, 71-76
Humidity, 9
Humidity, effect on crack growth, 287-290
Humidity test, 202
Hydride, 164
Hydrogen selenide, 163
Hydrogen sulfide, 163
Hydrometeor raindrop test facility, 240

Ice
- birefringence, 19
- erosion, 243
- Illumination effect on Ge transmission, 50
- Impedance, acoustic, 256
- Impurity absorption, 29
- In-line transmittance, 13
- Inch, 345
- Indentor, 115
- Index of refraction (see refractive index)
- Indium phosphide, 56

Infrared-guided missile, 1
Infrared radiation, 1, 2
- long wave, 2, 3
- midwave, 2, 3
Infrared seeker, 1
Infrared/visible window, 29
Insect impact damage, 217
Interband absorption, 46
Interference fringe, 25-26, 201-202
Interferometry, 182
Internal transmittance, 12, 13, 77
Intraband absorption, 46
Intrinsic property, 30
Ion beam shaping, 332
IRBAS, 80
IRG-11, 18, 380
IRG100
- expansion, 128
- thermal conductivity, 128
- transmission window, 56
Irradiance, 67, 372
Irtran, 18, 150
Irtran-1, 34, 40
Irtran-2, 40
Isostatic pressing, 156
Isotropic material, 19, 381
Isotropic solid, 87

Jet engine, 5
Joule, 345

k (optical constant), 27
K_e, 118
Kilogram, 345
Klein figure of merit, 140
Knoop hardness, 115, 116
Knoop indentor, 115
KRS-5, 18, App. C
- density, 114
- elastic constants, 378
- expansion, 128
- hardness, 117
- strength, 105
- thermal conductivity, 128
- transmission window, 57
KRS-6, 18
Ksi, 85, 345

LA, 51
Lambertian radiator, 373
Lanthana-doped yttria, 88, App. C
- annealing, 162-163

density, 114
- elastic constants, 380
- expansion, 128
- fabrication, 159-161
- fract. toughness, 119, 161
- grain size/strength, 120
- hardness, 117
- heat capacity, 127, 128
- hydroxyl removal, 162
- microwave properties, 80
- modulus, 135
- nylon bead impact, 240
- phases, 159
- Poisson ratio, 135
- sintering, 159-160
- strength, 105, 108, 135
- thermal conduct., 128, 131
- thermal properties, 395
- thermal shock, 135
- transmission spectrum, 31
- transmission window, 56
- uv-visible transmis., 35
- wind tunnel test, 139
Lanthanum fluoride, 197
LANTIRN window, 217, 231
Lapping, 181
Laser calorimetry, 37
Laser flash method, 131
Laser machining, 331
Laser rod, 13
Laser window, 198, 330
Lateral crack, 244
Lateral outflow jetting, 223
Lattice vibrations, 29
Lead fluoride
- antireflection coat, 197
- hardness, 117
- stress in coating, 205
- transmission window, 57
Lead sulfide, 117
Lead telluride, 117
Light, 2, 15
Linear elastic behavior, 376
Liter, 345
Lithium fluoride, App. C
- density, 114
- elastic constants, 378
- expansion, 128
- glass transition, 60, App. C
- thermal conductivity, 128
- thermal properties, 396
- transmission spectrum, 32
- transmission window, 56
- uv-vis transmis., 34, 35
Lithography, 212, 273
LO, 51
Long wave window, 2, 3
Longitudinal vibration, 51, 52
Longitudinal wave, 222, 230
Loss tangent, 44, 77
Lucite, 233
Mach-altitude limit, 141
Mach number, 45, 112
Machining, 181
Magnesium fluoride, 1, App. C
antireflection coat, 197
birefringence, 19
coating, 202
density, 114
diamond turning, 182
dn/dT, 60, App. C
elastic constants, 380
etittance, 40
expansion, 128
fabrication, 87
hardness, 117
heat capacity, 128
microwave absorption, 78
microwave properties, 80
MIJA threshold, 239
modulus, 135
Poisson ratio, 135
rain damage threshold, 224, 228, 230, 232
refractive index, 17
sand erosion, 247
scatter, 66
strength, 105-107, 135, 187
stress in coating, 205
thermal conductivity, 128
thermal properties, 397
thermal shock, 135
transmission spectrum, 31, 32
transmission window, 56
transmittance, 24
uv-visible transmission, 34
Magnesium oxide, App. C
antireflection coat, 197
density, 114
elastic constants, 378
expansion, 128
grain size/strength, 120
hardness, 117
heat capacity, 128
microwave properties, 81
modulus, 135
Poisson ratio, 135
refractive index, 17
strength, 135
thermal conductivity, 128
thermal shock, 135
thermo-optic distortion, 330
transmission window, 56
uv-visible transmission, 35
Magnetic permeability, 209
Magnetorheological finishing, 181
Marshall-Palmer distribution, 218
Mass loss
heating ZnS, 147
rain erosion, 231-232
Mean free path, phonon, 129
Mean strength, 386-390
Mechanical properties, 84-121
Mechanical strength
grain size effect, 314
rain damage, 225, 227
Median crack, 114
Mesh, 212
Metal-induced nucleation of diamond, 308
Meter, 345
Methyl radical, 306
Microstructure, 92
Microwave, 2
plasma reactor, 306
shielding, 207-212
transmission, 44ff, 77-81
window, 2, 3
Mie scattering, 68
MIJA, 237-239
damage threshold, 259
MIL-0-13830, 180
MIL-F-48616, 180
Milling, 156
Missile, 1
Missile dome erosion, 215
mm Hg, 345
Modes of fracture, 118
Modulation, 69
Modulation transfer function, 68-71, 231-331
Modulus, 85
biaxial, 206
erosion protection, 253
rupture, 88
Weibull, 99
Mohs hardness, 116
MOR, 88
Moth-eye, 190-191, 199
erosion, 333
MPa (megapascal), 345
MRF finishing, 181
MTF, 68-71
Multiphonon absorption, 29
Multiphonon region, 30
Multiple-impact jet apparatus (MIJA), 237-239
Multispectral zinc sulfide, 34, 53, 164-166, 247
Natural rain, 218
Nd:YAG laser rod, 13
Near-net-shape dome, 175, 176
Neodymium fluoride, 197
Newton, 345
Niobium release layer, 309
Nitroxyeceram, 80
Normal dispersion, 29, 30
Nylon bead, 240
Ohms per square, 208
Optical axis, 19
Optical brazing, 270-272
Optical constants, 27, 231, App. C
Optical fiber, 16
Optical figure, 178
Optical finishing, 177-188
Optical flat, 182
Optical mode, 51, 52
Optical pathlength, 75, 76
Optical polish, 96
Optical properties, 12ff, 63ff, App. C
Optical scatter, 20, 21
OPTIMATR, 40, 41, 44
Ordinary direction, 19
Organic composite radome, 80
Overtone, 51
Oxidation, 147, 334-335
protection, 265
Oxygen deficiency, 156
Ozone, 3
Pascal, 85, 345
Pathlength, 7
Periodic table, 55
Permeability of space, 344
Permittivity of space, 344
Petch equation, 120, 178
Phonon, 30, 51, 129, 320
Photon, 2
Photon flux, blackbody, 73
Photon noise, 71
Physical constants, 344
Pi, 344
Pinhole, 158
Planck distribution, 4, 73
Planck's constant, 2, 344
Plastic deformation, 87, 114
Plexiglass, 233
PMMA, 233
Poisson's ratio, 86, 380, 381
Polarization, 20
Polish, 158
Polishing, 181-183
diamond, 330-332
Polishing damage, 184-188
Poly(methylmethacrylate) (PMMA), 233
Polycrystalline material, 20, 21, 150-152, 155ff
diamond, 305
Polyethylene, 189-191
Polymer adhesive, 256-257, 266-267
Polymer cladding, 268-269
Polymer window, 189-191
Pore, effect on scatter, 68
Potassium bromide, App. C
density, 114
elastic constants, 378
expansion, 128
hardness, 117
heat capacity, 128
strength, 105
thermal conductivity, 128
transmission window, 57
Potassium chloride
bulk absorption, 13
expansion, 128
hardness, 117
heat capacity, 128
hot forging, 178
strength, 105
surface absorption, 13
thermal conductivity, 128
Potassium iodide, 57
Potential well, 50
Pound, 345
Powder processing, 155ff
Power, radiant, 12
Pressing, isostatic, 156
Pressure
acceleration, 113
atmosphere, 142
dome, 111
free-stream, 111
rain impact, 223-224
refractive index, 18, App. C
stagnation, 111, 112
Prism, 27
Probability of failure, 99
Profiler, 179
Projectile, cannon-launched, 113
Proof test, 106, 113, 280-298
space shuttle window, 295-298
theory, 290-295
Protective coating, 252-273
mechanism, 252-257
Proton mass, 344
psi (pound/in²), 345
Pyramidal dome, 145
Pyroceram, 80
Quantum number, 50
Quarter-wave coating, 195
Quartz, App. C
dielectric constant, 44, 77
dielectric loss, 29
Quartz crystal microbalance, 202
Quartz-polyimide, 80
Radial crack, 114, 244
Radial stress, 92-93
Radiance, 67, 373
Radiant emission, 3-6
Radiant energy, 371
Radiant flux, 371
Radiant heat transfer, 130
Radiant intensity, 372
Radiation, 12, 371
Radiation, electromagnetic, 2
Radio wave, 2
Radiometry, 371
Radome, 78
Rain, 218-220
distortion, 241
visibility, 6-11
Rain erosion
aerodynamic effects, 241-243
damage threshold
velocity, 224-232
effect of stress, 230-231
effect on MTF, 231
Radome, 78
Rain, 218-220
distortion, 241
visibility, 6-11
Rain erosion
aerodynamic effects, 241-243
damage threshold
velocity, 224-232
effect of stress, 230-231
effect on MTF, 231
Raycera, 80
Rayleigh criterion, 63, 64
Rayleigh scattering, 68
Rayleigh wave, 223, 239
attenuation, 254
speed, 227
Reciprocal centimeter, 3
Recirculation region, 145
Reduced mass, 51
Reflectance, 13, 14
single-surface, 23, 27
total, 23
Reflection, 12, 13, 22, 195
microwave, 78
shock wave, 256-257
Refraction, 15
Refractive index, 15, 18, 22, 27, 196, 197, App. C
complex, 27
effect on scatter, 68
general behavior, 28-30
pressure effect, 18
relation to dielectric constant, 44, 77
temperature effect, 18
wavelength effect, 29
Reliability, 102-103, 107
REP coating, 248, 264-266
Residual strength, 225
static fatigue, 300
Residual stress, 217
Resistance, 208
Resistivity, 207
thermal, 131
Resolution, 63, 64
Resonant mesh, 212
Renshlffen frequencies, 29
RF shielding, 207-212
Ring fracture, 239
Ring-on-ring flexure test, 92-94, 95
River mark, 94, 95
Rocket sled, 216
Root-mean-square, 178
Roughness, 178, 179
Ruby, 187
Rugate filter, 203-203
Sabot, 240
Safety factor, 101-103, 109-110
Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 12 Feb 2020
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use
Salt spray test, 202
Sand erosion, 243-248
AR coatings, 269
coating resistance, 260
diamond, 334
effect on strength, 244
impact angle, 250
protection by diamond, 272-273
rate, 245-248
sapphire, 334
zinc sulfide, 334
Sapphire, 202, App. C
absorption coefficient, 30
annealing, 187-188
birefringence, 19
coated, 207, 255
crystalline, 207
conductive coating, 255
crystal, 19
density, 114
diamond turning, 182
density, 114
diamond turning, 182
dn/dT, 60, App. C
dome, 175, 176, 177
EFG method, 176
elastic constants, 379
emittance, 41, 174, 175
expansion, 128
fiber strength, 177
fract. toughness, 118, 207
fundamental freq., 54
growth and properties, 173-177
hardness, 116
heat capacity, 128
HEM grades, 174
mesh, 212
microwave properties, 78, 80, 81
MIJA threshold, 239
modulus, 135
near-net-shape, 175-177
nylon bead impact, 240
plastic deform., 87, 91
Poisson ratio, 135
polishing, 183, 187
purity, 174
rain damage threshold, 224, 226, 228
refractive index, 17, 22
sand erosion, 246, 334
scoping, 174, 175
slow crack growth, 289-290
strain rate/strength, 98
strength, 98, 105, 107, 108, 135
subsurface damage, 183, 184
temp./absorption, 43
temp./emission, 44
temp./strength, 107, 108
temp./toughness, 121
temp./transmittance, 42
thermal conduct., 128
thermal properties, 397
thermal shock, 135
thermal optic distortion, 330
transmission spectrum, 31
transmission window, 56
transmittance, 24
upper temperature, 148
uv-visible transmit., 34
vacuum grade, 174, 175
Verneuil method, 172
wind tunnel test, 139
windows, 177
Scaling factor, 99
Scatter, 8, 14, 20, 21, 22,
64-68
BTDF, 66
measurement, 65, 66
phonon, 320
roughness, 178, 179
total integrated, 65
Schlieren pattern, 146
Schott IRG100 (see IRG 100)
Scooping, 174, 175
Scotch tape test, 202
Scratch, 180, 244
Scratch/dig specification, 180-181
Seeker, 1
Sellmeier equation, 18, 29
Semiconductor, 46
Separation shock, 145, 146
Shear modulus, 87, 88, 381
Shear stress, 87, 88
Shear wave, 222
Sheet resistance, 208
Shielding effectiveness, 208
Shock speed in water, 223
Shock wave, 145, 146
effect on rain, 241-243
rain impact, 222
reflection, 239, 256-257
separation, 145, 146
velocity, 230
Sidewinder missile, 1
Signal-to-noise degradation
by hot window, 72
Silica
antireflection coat, 197
refractive index, 17
transmission window, 56
Silicon, App. C
2-color properties, 58
antireflection coat, 197
band gap, 46
carrier conc., 47
crystal, 19
density, 114
diamond turning, 182
dn/dT, 60, App. C
elastic constants, 378
expansion, 128
fract. toughness, 118, 207
hardness, 117
heat capacity, 128
mechanical strength, 267
microwave properties, 80
MIJA threshold, 239
modulus, 135
oxygen-free, 172, 173, 266
Poisson ratio, 135
polycrystalline, 172, 266-268
rain damage threshold,
224, 228, 230
rain impact, 221
refractive index, 17
sand erosion, 247
strength, 105, 135
temp./absorption coeff., 49
temp./transmittance, 48
thermal conductivity, 128
thermal expansion, 318
thermal properties, 399
thermal shock, 135
transmission spectrum,
33, 34, 198
transmission window, 56
transmittance, 24
upper temperature, 44, 46
UV-visible transmit., 34
water cooled window, 74
Silicon carbide, 167-169,
App. C
absorption coefficient, 168-169
density, 114
elastic constants, 378
expansion, 128
fracture toughness, 118
hardness, 116
heat capacity, 128
modulus, 135
Poisson ratio, 135
refractive index, 17
strength, 105, 135
thermal conductivity, 128
thermal expansion, 128
thermal shock, 135
transmission spectrum, 31
transmission window, 56
Silicon monoxide, 197
Silicon nitride, 169, App. C
coating material, 207
density, 114
expansion, 128
fracture toughness, 118
grain boundary, 151-152
hardness, 117
heat capacity, 128
microwave properties, 80
modulus, 135
Poisson ratio, 135
rain damage threshold, 226, 228
refractive index, 17
strength, 105, 120, 135, 186
thermal conductivity, 128
thermal shock, 135
transmission window, 56
Weibull curve, 101
Silver chloride
expansion, 128
hardness, 117
heat capacity, 128
thermal conductivity, 128
transmission window, 57
Single crystal, 21, 66, 150-152, 170ff
Single-impact waterjet, 235-236, 240
Single-point diamond turning, 181-182
Single-surface reflectance, 23
Sintering, 156, 157, 159-161
Sintering aid, 164, 166
Skin, 4
Skin depth, 209
Slanted window, 145
Sled test, 216
Slow crack growth, 285-290
Slurry, 156
Snell’s law, 15
Snow, 6-11
Sodium chloride, App. C
crystal growth, 171
density, 114
\(dn/dT\), 60, App. C
elastic constants, 378
expansion, 128
hardness, 117
heat capacity, 128
modulus, 135
Poisson ratio, 135
refractive index, 17
strength, 105, 135
thermal conductivity, 128
thermal shock, 135
transmission window, 57
Solid particle erosion, 243-248
Solution hardening, 117
Sound speed, 142, 256
Space shuttle, 4
window, 295-298
Sparrow criterion, 64
Spatial frequency, 69
Specific heat, 128, App. G
Spectral exitance, 4
Spectral irradiance, 372
Spectral radiant energy, 371
Spectral radiant flux, 371
Spectral radiant intensity, 372
Spectral radiant power, 371
Spectrum, electromagnetic, 2
Specular reflection, 22
Speed
light, 2, 15, 344
longitudinal wave, 230
sound, 142, 256
transverse wave, 230
Spinel, App. C
coated, 207
density, 114
diamond turning, 182
\(dn/dT\), 60, App. C
elastic const., 378, 380
emittance, 41
expansion, 128
fract. toughness, 118, 207
fundamental freq., 54
hardness, 117
heat capacity, 128
microwave properties, 78, 80, 81
MIJA threshold, 239
modulus, 135
nylon bead impact, 240
Poisson ratio, 135
rain damage threshold, 224, 228
refractive index, 17
sand erosion, 247
strength, 105, 108, 135, 187
temp./emission, 44
temp./toughness, 121
temp./strength, 108
thermal conduct., 128
thermal properties, 400
thermal shock, 135
transmission spectrum, 31
transmission window, 56
transmittance, 24
upper temperature, 148
uv-visible transmis., 34
Verneuil method, 172
wind tunnel test, 139
Spring, 50
Stability, thermal, 145-148
Stagnation pressure, 111, 112
Stagnation temperature, 45, 112, 141
Standard grade ZnS, 164-166
Static fatigue, 283, 299-300
Stiffness coefficients, 376, 378
Stockbarger-Bridgman crystal growth, 170
Stoichiometry, 156
Strain, 85, 375
Strain rate, 91, 98
Strength, 85, 87
change during proof test, 292-293
effect of area/volume, 103-104, 106-107
effect of grain size, 120
effect of surface finish, 183-188
loss with rain impact, 225, 227
measurement, 89-94
Petch equation, 120
relation to fracture toughness, 119
relation to grain size, 120
strain rate dependence, 98
temperature effect, 107
theoretical, 96
values for materials, 105
Strength-enhancement annealing, 163
coating, 205-207
Stress, 84, 374
3-point bending, 89
4-point bending, 90
buried crack, 254
coatings, 205-207
concentration, 94 96-98
corrosion, 283, 288
crack tip, 96
dome, 111
effect on rain damage, 230-231
equibiaxial flexure, 92
formulas, 89-92
intensity factor, 284-285
notation, 374
shear, 374
Strontium fluoride, 105, 185
Subcritical crack growth, 98, 217
Subsurface damage, 183-185
Surface absorption, 13, 39, 323-324
Surface energy, 96
Surface finish effect on strength, 183-188
Surface profile, 179
Surface roughness, 178, 179
coating, 202
Surface scatter, 22
Syndite, 305

TA, 51
Talc hardness, 116
Tape test, 202
Temperature
absorption, 42-45
atmosphere, 142
atmospheric, 3
conducting coat, 209-210
dust, 6-11
dust, 6-11
effect on erosion protection, 253
emittance, 4, 42-45
external, 13
fog, 6-11
in-line, 13
internal, 12, 13
rain damage, 235
rain impact effect, 228-231
refractive index, 18, 25-26
sintering, 156, 160
stagnation, 45, 112
strength, 107
surface absorption, 39
transmission, 48-49
wavefront effect, 74-76
Tensile specimen, 84
Terminal velocity, 219
Thallium bromide, 57
Theoretical strength, 96
Thermal conductivity, 73ff, App. G
anisotropy, 319
grain size effect, 320
transversal oscillation, 25
Transmissivity, 6, 13-14, 23-24
total reflectance, 23
Toughness, 118
Transmission, 12, 13
atmospheric, 3
conductive coat, 209-210
dust, 6-11
dust, 6-11
fog, 6-11
internal, 12, 13
Transverse oscillation, 51, 52
Transverse wave, 222
Transverse wave velocity, 230
Tuftran, 165-167, 217, 257, 266
Type I/II diamond, 304
Thermally thick dome, 134
Thermally thin dome, 134
Thermogravimetric analysis, 335
Thermooptic distortion, 330
Thickness
dome, 141
effect on erosion protection, 253
measurement, 201-202
window design, 109-110
Thorium fluoride, 196, 197, 198
Thorium oxide, 197
Thorium oxyfluoride, 205
Three-point flexure test, 89
Time to failure, 295-296, 300
TO, 51
Topaz, 116
Torr, 345
Total integrated scatter, 65, 178, 179
Total reflectance, 23
Toughening, 154
Toughness, 118
Transmittance, 6, 13-14, 23-24
etalon effect, 25-26
external, 13
in-line, 13
internal, 12, 13
Transverse oscillation, 51, 52
Transverse wave, 222
Transverse wave velocity, 230
Tuftran, 165-167, 217, 257, 266
Two-color materials, 58-59
Ultraviolet degradation of polyethylene, 189-190
Ultraviolet-visible transmission spectra, 34-35
Umklapp process, 320
Unclamped window, 109
Uniaxial pressing, 161
Urbach tail, 29, 30
Vacuum ultraviolet region, 174
Valence band, 46
Vapor pressure, H2O in air, 9
Velocity of shock wave, 230
Verneuil method, 172
Vibration energy level, 50
Vibrational quantum number, 50
Vickers indentor, 114, 115
Viscosity, atmosphere, 142
Visibility, 10
Visible light, 2
Visible transmission spectra, 34-35
Void, effect on scatter, 68
Volume, effect on strength, 103-104
Water, absorption bands, 3
Water cooling of window, 74
Water hammer pressure, 223
Waterclear zinc sulfide, 59, 164
Waterjet, 235-239, 332-333
Watt, 345
Wavelength, 2
free carrier effect, 47
in matter, 78
Wavenumber, 3
Waviness, 178
Weakest link, 382
Weibull critical stress, 383
Weibull distribution, 99, App. F
Weibull modulus, 99, 383
Weibull probability, 383
Weibull scaling factor, 383
Weibull statistics, 98-104
Wein displacement law, 4
Whirling arm, 233-235
Wind tunnel, 137-139
Yttrium aluminum garnet polishing, 187
Yttrium fluoride, 197
Yttrium oxide (see yttria)

Zerodur, 127, 153
Zinc hydride, 164
Zinc selenide, 165-167, App. C
 2-color properties, 60
 absorption coefficient, 39
 antireflection coat, 197
 BTDF, 67
 bulk absorption, 13
 density, 114
 deposition, 163
 diamond turning, 182
dn/dT, 60, App. C
 elastic constants, 378, 380
 expansion, 128
 fracture toughness, 118
 frequency doubling, 77
 fundamental frequency, 54
 grain size/strength, 120
 hardness, 117
 heat capacity, 128
 laser window, 198
 microwave properties, 78, 80
 modulus, 135
 Poisson ratio, 135
 proof test, 281-283
 properties, 166
 rain damage threshold,
 224, 228, 230, 232, 235
 reflectance, 23-24
 refractive index, 17
 scatter, 67
 strength, 105, 135
 surface absorption, 13, 39
 thermal conductivity, 128
 thermal expansion, 318
 thermal properties, 401
 thermal shock, 135
 thermo-optic distortion, 330
 transmission spectrum, 31
 transmission window, 56
 transmittance, 24
 upper temperature, 148
 uv-visible transmis., 35
 Weibull curve, 100
 wind tunnel test, 139
Yttria-stabilized zirconia, 121

BTDF, 67
Cleartran, 59, 164
coating, 205
coating/strength, 255
combined effects erosion, 248
ductive coating, 210
decomposition, 147-148
density, 114
deposition, 163
diamond coating, 273
diamond composite, 165-167
diamond turning, 182
dn/dT, 60, App. C
drop size/erosion, 249
elastic const., 378, 380
elemental, 59, 165-166
etittance, 40
expansion, 128
FLIR grade, 164
fract. toughness, 118, 164
fundamental freq., 54
GaP composite, 167
grain size, 164
hardness, 117, 164
heat capacity, 128
heat effect, 147-148
hydride, 164
impact angle/erosion, 249
mass loss/heating, 147-148
mesh, 212
microwave properties, 78, 80, 81
MIJA threshold, 239
modulus, 135
multiphonon region, 53
multispectral, 164-166
optical scatter, 165
oxidation, 147-148
Poisson ratio, 135
properties, 166
rain damage threshold,
 224, 228, 230, 235, 243
rain impact, 221
refractive index, 17
resonant mesh, 212
sand erosion, 244, 245, 246, 247, 334
scatter, 67
standard, 164-166
strength, 105, 107-109, 135, 225
stress in coating, 205
temp./strength, 107-109
temp./transmittance, 42
Index

thermal conduct., 128
thermal expansion, 318
thermal properties, 402
thermal resistivity, 131
thermal shock, 135
thermo-optic distortion, 330
transmission loss, 147
transmission spectrum, 32, 165
transmission window, 56
transmittance, 24
Tuftran, 165-167
upper temperature, 148
uv-visible transmis., 34
Waterclear, 59, 164
Weibull curve, 100
wind tunnel test, 139
Zirconia, App. C
antireflection coat, 197
nylon bead impact, 240
refractive index, 17
temp./hardness, 121
transmission window, 56
yttria-stabilized, 121
Zirconium fluoride, 197
Zirconium tungstate, 126
ZPBSN, 80
Daniel C. Harris is a Senior Scientist in the Chemistry and Materials Division of the Research Department at the Naval Air Warfare Center at China Lake, California, where his specialty is infrared window and dome materials. He holds a Bachelor's degree in chemistry from Massachusetts Institute of Technology and a Ph.D. in chemistry from California Institute of Technology. Prior to coming to the Naval Air Warfare Center in 1983, he taught at the University of California at Davis and Franklin and Marshall College in Lancaster, Pennsylvania. He is the author of the widely used undergraduate analytical chemistry text, *Quantitative Chemical Analysis* (5th edition, 1998), and has also written the textbook *Exploring Chemical Analysis* and co-authored *Symmetry and Spectroscopy*. On those very rare occasions when he is not at his desk or in an airport, he can be found hiking under the blue California sky.