Bibliography

[188] A. K. Wong, L. W. Liebmann, and A. F. Molless, “Alternating phase-
shifting mask with reduced aberration sensitivity: lithography consid-

Wood, “Phase-mask effects by dark-field lithography,” in C. Progler,

[191] Y. Taur, D. A. Buchanan, W. Chen, D. J. Frank, K. E. Ismail, S.-H. Lo,
G. A. Sai-Halasz, R. G. Viswanathan, H.-J. C. Wann, S. J. Wind, and
H.-S. Wong, “CMOS scaling into the nanometer regime,” *Proceedings
of the IEEE*, vol. 85, no. 4, pp. 486–504 (Apr. 1997).

[193] S. Asai and Y. Wada, “Technology challenges for integration near and
below 0.1 μm,” *Proceedings of the IEEE*, vol. 85, no. 4, pp. 505–520
(Apr. 1997).

to silicon dioxide for memory and logic devices,” *Nature*, vol. 406,

[195] B. Davari, “CMOS technology: Present and future,” in *Digest of Tech-

[196] J. D. Meindl, “Gigascale integration: is the sky the limit?” *IEEE Cir-
cuits and Devices Magazine*, vol. 12, no. 6, pp. 19–24,32 (Nov. 1996).

2000).

Additional references

On integrated circuit fabrication:

W. Glendinning and J. Helbert, eds., *Handbook of VLSI Microlithography:
Principles, Technology and Applications*, Noyes Publications,

On microlithography and optical lithography:

On nonoptical lithography techniques:

http://www.sematech.org

http://lasers.llnl.gov/lasers/IST/euvl.html

http://www.xraylith.wisc.edu/homepage.html

http://www.bell-labs.com/project/SCALPEL/index.html

American Institute of Physics, (Feb 2000).

http://diva.eecs.berkeley.edu/oldham/pubs/SPIEtalk.ppt

On optical imaging:

On electromagnetism:

OPC software companies:
http://www.aiss.com
http://www.masktools.com
http://www.avanticorp.com
http://www.mentor.com
http://www.numeritech.com
Index

k_1 factor, 28
trend, 29
1-Gb DRAM critical levels, 153

aberration
alternating phase-shifting mask, 126
effect on side-lobe, 145
off-axis illumination, 88
aberration sensitivity, 126, 173
alternating phase-shifting mask
aberration sensitivity, 126
additive process, 122
comparison with attenuated phase-shifting mask, 141
computer-aided design, 133
cost, 138
dark-field application, 131–133
design rules, 131
pattern density increase, 131
defects, 128
differential imaging, 129
effective errors, 126
effective transmission and phase, 126
enhanced, 173
in conjunction with off-axis illumination, 121
intensity imbalance, 123
light-field application, 133–137
conjugate twin shifter, 135
gate-only phase-shifting, 137
multiple phase steps, 135
pattern density decrease, 135
residual phase edge, 133
trim mask, see trim mask, alternating phase-shifting
line placement error, 123
phase conflict, 132
phase error, 124
repair, 130
restoring balance, 125
side wall scattering, 124
space width difference, 123
spectrum, 118
subtractive process, 121
transmission error, 124
annular illumination, 85–87
σ_{inner}, 87
σ_{outer}, 87
antireflective coating, 19
assist feature, 97
phase-shifting, 131, 140
asymmetric subgrid biasing, 96
attenuated phase-shifting mask
alignment problem, 149
carbon thin-film, 148
comparison with alternating phase-shifting mask, 141
cost, 151
fabrication process, 150
first generation, 147
in conjunction with off-axis illumination, 143
inspection problem, 149
issues, 151
opaque border, 148–150
Index

spectrum, 141
thin-film materials, 148
transmission level, 147
undesired multiple exposure, 148

BIM, see binary-intensity mask
binary-intensity mask, 12
borderless contact, 168
borosilicate glass, 11
Bossung plot, 65

crhomium-on-glass mask, 11, 12
comparison with attenuated phase-shifting mask, 143
COG, see chromium-on-glass mask
compensating process, 180
complex degree of coherence, 55
anurnal illumination, 86
dipole illumination, 83
partially coherent imaging, 57
quadrupole illumination, 84
computer-aided design, 4, 183
alternating phase-shifting mask, 133
optical proximity correction, 110
concurrent reticle-illumination optimization, 176
contact hole
alternating phase-shifting mask application, 131
attemuated phase-shifting mask benefit, 139
bit line, 166
pupil filtering, 176
rectangular, 168
resolution limit, 64
contact printing, 14
contrast
image, see image quality quantification, contrast
contrast enhancement layer, 20
corner rounding, 92, 100
correct-negative design, 10
correct-positive design, 10
cost of ownership, 24
cross-disciplinary optimization, 184
dark-field illumination, 177
delta function, see Dirac delta function
dense pattern, 78
depth of focus, see image quality quantification, depth of focus
enhancement by multiple exposure, 175
design grid, 95
diffracted order, see mask spectrum
zero magnitude, 43, 120
dipole illumination, 80–83
asymmetry, 83
Dirac delta function, 35
direct write lithography, 26, 185
dose-to-clear, 22
dose-to-gel, 22
effective mask size, 11
effective source, 47–48
effective threshold, 181
effective transmission and phase, see alternating phase-shifting mask, effective transmission and phase
electron beam projection lithography, 26
embedded phase-shifting mask, 148
enhanced alternating phase-shifting mask, 173
EUV lithography, see extreme ultraviolet lithography
excimer laser, 6
exposure latitude, see image quality quantification, exposure latitude
exposure system, 13–18
ultraviolet lithography, 26
Index

FLEX, 175
forbidden pitch, 100, 183
fused silica, 12
g-line, 6
Gibbs phenomenon, 145
halftone biasing, 95
halftone mask, 148
hammer head, 100
history
 lithography, 1
 optical lithography, 13
 printing, 1
Huygen’s principle, 17
i-line, 6
IDEAL, 172
image contrast, see image quality quantification, contrast
image quality quantification, 59–70
 common window, 68
 contrast, 60
 depth of focus, 62
 exposure latitude, 60
 exposure-defocus window, 64
 linewidth variation, 69
 log slope, 61
 modulation transfer function, see modulation transfer function
 need of metric, 183
 normalized image log slope, 61
 total window, 66
imprint lithography, 26
impulse response, see point spread function
integrated circuit
 creation, 2–4
 design, 4
 fabrication, 4
ion projection lithography, 26
Köhler’s illumination method, 7
large σ, 71–79
 relative advantage, see off-axis point source, relative advantage
Levenson phase-shifting mask, see alternating phase-shifting mask
line
 definition, 9
 line edge roughness, 27
 line lengthening, 100
 line shortening, 92, 100
 reduction by multiple exposure, 173
lithography-friendly design, 28, 184
log slope, see image quality quantification, normalized image log slope
mask bias
 definition, 11
 process window, 68, 157
mask constraint, 114, 115
 correction goal, 108
 grid size, 95
 model-based OPC, 105
 serif, 101
 verification, 115
mask error enhancement factor, see mask error factor
mask error factor, 11
 alternating phase-shifting mask, 121
 contact hole, 180
 effects on CD control, 165
 ramification on biasing, 166
mask inspection
 challenge, 183
mask spectrum, 39
 alternating phase-shifting mask, 118
 attenuated phase-shifting mask, 141
chromium-on-glass mask, 37
dependency on dimension, 42
pitch dependence, 42
two-dimensional patterns, 44
mask tone, 10, 180
mask topography, 126
Maxwell’s equations, 126
medium \(\sigma \), 79
MEF, see mask error factor
mercury arc lamp, 6
microlithography
nonphotolithography techniques, 26
optical lithography, see optical lithography
requirements, 24
modulation transfer function, 50, 60
Moore’s law, 171
MTF, see modulation transfer function
multiple exposure, 171–175
nonlinearity, 91
nontelecentricity, 75, 79
effective, 88
normalized log slope, see image quality quantification, normalized image log slope
numerical aperture, 24, 29, 31
off-axis illumination
aberration sensitivity, 88
issues, 87
off-axis point source, 73
image shift with focus, 75
loss of exposure latitude, 74
nontelecentricity, see nontelecentricity
relative advantage, 76
on-axis point source, 73
optical imaging
coherent, 31–39
incoherent, 53
partially coherent, 45–53
optical interaction range
annular illumination, 87
dipole illumination, 83
partially coherent imaging, 58
ramification on optical proximity correction, 102
optical lithography
\(k_1 \) factor, see \(k_1 \) factor
challenges, 27
contribution to circuit miniaturization, 6
current capabilities, 26
general description, 2
history, 13
light source, 6–8
mask, see mask-related subjects, 8–13
requirements, 24
resolution
three parameters affecting, 28
wavelengths, 28
optical proximity correction
catastrophic, 93
comparison of numerical techniques, 105
computer-aided design, 110
constraint, see mask constraint
correctable error sources, 106
correction function, 108
correction goals, 108
design rule checker, 102
designer’s intent, 115
derror characterization, 107
data gathering and analysis, 108
process changes, 108
error sources, see patterning error, sources
fracturing, see optical proxim-
Index

ity correction, segmentation
hierarchy management, 113
hybrid, 105-106
model-based, 103-105
backward, 104
forward, 104
kernel, 103
rule-based, 102-103
segmentation, 110
edge-centric, 110
environment, 110
even, 110
shape-centric, 110
semitoorrectable error sources, 107
verification, 113
optimization methodology, 153

partial coherence factor, 8, 24, 48
large σ, see large σ
maximum, 79
medium σ, see medium σ
minimum, 79
small σ, see small σ

pattern correction, 92

pattern error
sources, 106, 171

pellicle, 9

phase-shifting
alternating, see alternating phase-shifting mask
attenuated, see attenuated phase-shifting mask

chromeless, 13
dark-field illumination, 179
embedded, 148
halftone, 148
Levenson, see alternating phase-shifting mask
mask types, 12
rim, 12

photolithography, see optical lithography

photoresist, 18-23
acid diffusion length, 157
benefit of negative tone, 159
contrast, 21, 157
development, 23
grade, 157
negative, 21
positive, 21
tone, 180

point spread function, 168, 176

printing
impact on civilization, 1
three ingredients, 1

process window
mask bias, see mask bias, process window
quantification, see image quality quantification

projection printing, 15

proximity effect, 91
dark-field and light-field masks, 164
proximity printing, 14
pupil filtering, 175

quadrupole illumination, 84
weak, 84

raster-scan mask writer, 95
Rayleigh unit of defocus, 63
RELACS, 180

resolution enhancement technique
effects on overlay and alignment, 169
general applicability, 156
guidance based on experience, 169
strong, 141, 183
use of intuition, 160
weak, 141, 183
resolution limit, 185
coherent
isolated space, 37
Index

periodic pattern, 39
contact hole, see contact hole,
resolution limit
line, 61
nebulous, 59
optical lithography, 59
partially coherent, 53
Rayleigh's, 58
scanners, 16
selective line biasing, 94
serif, 100
sharp corners, 172
shot noise, 20
side lobe
intensity, 145
reduction, 168
suppression, 145
side-lobe
interaction with aberrations, 145
simulation
aerial image, 157
electromagnetic propagation, 126
photoresist acid diffusion, 157
photoresist development, 157
simultaneous printing of sparse and
dense patterns, 79
sinc function, 36
small σ, 79
space
definition, 9
sparse pattern, 78
standing wave, 19
step-and-repeat systems, 15
step-and-scan systems, 16
steppers, 15
strong phase-shifting mask, see res-
olution enhancement tech-
nique, strong
strong resolution enhancement tech-
nique, see resolution enhance-
ment technique, strong
super-FLEX, 175
TCC, see transmission cross-coefficient
threshold resist model, 22
throughput
$\sigma > 1$, 79
alternating phase-shifting mask, 135
dark-field illumination, 179
line narrowing, 28
multiple exposure, 172
off-axis illumination, 89
traditional lithography, 30, 154
transmission cross-coefficient, 49
trend
k_1 factor, see k_1 factor, trend
process latitude, 172
trim mask
alternating phase-shifting, 134
sparse pattern, 173
two-beam imaging, 73
attenuated phase-shifting mask, 143
contrast, 83
ideal duty ratio, 143
ideal transmission, 145
imbalance beam intensities, 83
optimal illumination angle, 82
spatial period, 73
UDOF, see usable depth of focus
unmodified illumination, 71
usable depth of focus, 64
vector-scan mask writer, 95
weak phase-shifting mask, see res-
olution enhancement tech-
nique, weak
weak resolution enhancement tech-
nique, see resolution enhance-
ment technique, weak
x-ray lithography, 26
Zernike polynomial, 128