Bibliography

Bibliography

Additional references

On integrated circuit fabrication:

On microlithography and optical lithography:

On nonoptical lithography techniques:

http://www.sematech.org

American Institute of Physics, (Feb 2000).

http://diva.eecs.berkeley.edu/~oldham/pubs/SPIEtalk.ppt

On optical imaging:

On electromagnetism:

OPC software companies:

http://www.aiss.com
http://www.masktools.com
http://www.avanticorp.com
http://www.mentor.com
http://www.numeritech.com
Index

k_1 factor, 28
 trend, 29
1-Gb DRAM critical levels, 153
aberration
 alternating phase-shifting mask, 126
 effect on side-lobe, 145
 off-axis illumination, 88
aberration sensitivity, 126, 173
alternating phase-shifting mask
 aberration sensitivity, 126
 additive process, 122
 comparison with attenuated phase-shifting mask, 141
 computer-aided design, 133
 cost, 138
 dark-field application, 131–133
 design rules, 131
 pattern density increase, 131
 defects, 128
 differential imaging, 129
 effective errors, 126
 effective transmission and phase, 126
 enhanced, 173
 in conjunction with off-axis illumination, 121
 intensity imbalance, 123
 light-field application, 133–137
 conjugate twin shifter, 135
 gate-only phase-shifting, 137
 multiple phase steps, 135
 pattern density decrease, 135
 residual phase edge, 133
trim mask, see trim mask,
 alternating phase-shifting
 line placement error, 123
 phase conflict, 132
 phase error, 124
 repair, 130
 restoring balance, 125
 side wall scattering, 124
 space width difference, 123
 spectrum, 118
 subtractive process, 121
 transmission error, 124
annular illumination, 85–87
 σ_{inner}, 87
 σ_{outer}, 87
antireflective coating, 19
assist feature, 97
 phase-shifting, 131, 140
asymmetric subgrid biasing, 96
attenuated phase-shifting mask
 alignment problem, 149
 carbon thin-film, 148
 comparison with alternating phase-shifting mask, 141
 comparison with chromium-on-glass mask, 143
 cost, 151
 fabrication process, 150
 first generation, 147
 in conjunction with off-axis illumination, 143
 inspection problem, 149
 issues, 151
 opaque border, 148–150

209
Index

spectrum, 141
thin-film materials, 148
transmission level, 147
undesired multiple exposure, 148

BIM, see binary-intensity mask
binary-intensity mask, 12
borderless contact, 168
borosilicate glass, 11
Bossung plot, 65
crchromium-on-glass mask, 11, 12
comparison with attenuated phase-shifting mask, 143
COG, see chromium-on-glass mask
compensating process, 180
complex degree of coherence, 55
annular illumination, 86
dipole illumination, 83
partially coherent imaging, 57
quadrupole illumination, 84
computer-aided design, 4, 183
alternating phase-shifting mask, 133
optical proximity correction, 110
concurrent reticle-illumination optimization, 176
contact hole
alternating phase-shifting mask application, 131
attenuated phase-shifting mask benefit, 139
bit line, 166
pupil filtering, 176
rectangular, 168
resolution limit, 64
contact printing, 14
contrast
image, see image quality quantification, contrast
contrast enhancement layer, 20
corner rounding, 92, 100
correct-negative design, 10
correct-positive design, 10
cost of ownership, 24
cross-disciplinary optimization, 184
dark-field illumination, 177
delta function, see Dirac delta function
dense pattern, 78
depth of focus, see image quality quantification, depth of focus
elevation enhancement by multiple exposure, 175
design grid, 95
diffracted order, see mask spectrum
zero magnitude, 43, 120
dipole illumination, 80–83
asymmetry, 83
Dirac delta function, 35
direct write lithography, 26, 185
dose-to-clear, 22
dose-to-gel, 22
effective mask size, 11
effective source, 47–48
effective threshold, 181
effective transmission and phase, see alternating phase-shifting mask, effective transmission and phase
electron beam projection lithography, 26
embedded phase-shifting mask, 148
enhanced alternating phase-shifting mask, 173
EUV lithography, see extreme ultraviolet lithography
excimer laser, 6
exposure latitude, see image quality quantification, exposure latitude
exposure system, 13–18
extreme ultraviolet lithography, 26
Index

FLEX, 175
forbidden pitch, 100, 183
fused silica, 12
g-line, 6
Gibbs phenomenon, 145
halftone biasing, 95
halftone mask, 148
hammer head, 100
history
 - lithography, 1
 - optical lithography, 13
 - printing, 1
Huygen’s principle, 17
i-line, 6
IDEAL, 172
image contrast, see image quality quantification, contrast
image quality quantification, 59–70
 - common window, 68
 - contrast, 60
 - depth of focus, 62
 - exposure latitude, 60
 - exposure-defocus window, 64
 - linewidth variation, 69
 - log slope, 61
 - modulation transfer function, see modulation transfer function
 - need of metric, 183
 - normalized image log slope, 61
 - total window, 66
imprint lithography, 26
impulse response, see point spread function
integrated circuit
 - creation, 2–4
 - design, 4
 - fabrication, 4
 - ion projection lithography, 26
Köhler’s illumination method, 7
large σ, 71–79
 - relative advantage, see off-axis point source, relative advantage
Levenson phase-shifting mask, see alternating phase-shifting mask
line
 - definition, 9
 - line edge roughness, 27
 - line lengthening, 100
 - line shortening, 92, 100
 - reduction by multiple exposure, 173
lithography-friendly design, 28, 184
log slope, see image quality quantification, normalized image log slope
mask bias
 - definition, 11
 - process window, 68, 157
mask constraint, 114, 115
 - correction goal, 108
 - grid size, 95
 - model-based OPC, 105
 - serif, 101
 - verification, 115
mask error enhancement factor, see mask error factor
mask error factor, 11
 - alternating phase-shifting mask, 121
 - contact hole, 180
 - effects on CD control, 165
 - ramifications on biasing, 166
mask inspection
 - challenge, 183
mask spectrum, 39
 - alternating phase-shifting mask, 118
attenuated phase-shifting mask, 141
chromium-on-glass mask, 37
dependence on dimension, 42
pitch dependence, 42
two-dimensional patterns, 44
mask tone, 10, 180
mask topography, 126
Maxwell’s equations, 126
medium σ, 79
MEF, see mask error factor
mercury arc lamp, 6
microlithography
 nonphotolithography techniques, 26
 optical lithography, see optical lithography
requirements, 24
modulation transfer function, 50, 60
Moore’s law, 171
MTF, see modulation transfer function
multiple exposure, 171–175
nonlinearity, 91
nontelecentricity, 75, 79
effective, 88
normalized log slope, see image quality quantification, normalized image log slope
numerical aperture, 24, 29, 31
off-axis illumination
 aberration sensitivity, 88
 issues, 87
off-axis point source, 73
 image shift with focus, 75
 loss of exposure latitude, 74
 nontelecentricity, see nontelecentricity
 relative advantage, 76
on-axis point source, 73
optical imaging
 coherent, 31–39
 incoherent, 53
 partially coherent, 45–53
optical interaction range
 annular illumination, 87
dipole illumination, 83
 partially coherent imaging, 58
 ramification on optical proximity correction, 102
optical lithography
 k_1 factor, see k_1 factor
 challenges, 27
 contribution to circuit miniaturization, 6
 current capabilities, 26
general description, 2
history, 13
light source, 6–8
mask, see mask-related subjects, 8–13
requirements, 24
resolution
 three parameters affecting, 28
 wavelengths, 28
optical proximity correction
 catastrophic, 93
comparison of numerical techniques, 105
computer-aided design, 110
correctable error sources, 106
correction function, 108
correction goals, 108
design rule checker, 102
designer’s intent, 115
error characterization, 107
data gathering and analysis, 108
 process changes, 108
error sources, see patterning error, sources
fracturing, see optical proxim-
ity correction, segmentation
hierarchy management, 113
hybrid, 105–106
model-based, 103–105
backward, 104
forward, 104
kernel, 103
rule-based, 102–103
segmentation, 110
edge-centric, 110
environment, 110
even, 110
shape-centric, 110
semitransparent error sources, 107
verification, 113
optimization methodology, 153

partial coherence factor, 8, 24, 48
large σ, see large σ
maximum, 79
medium σ, see medium σ
minimum, 79
small σ, see small σ

pattern correction, 92
patterning error
sources, 106, 171
pellicle, 9
phase-shifting
alternating, see alternating phase-shifting mask
attenuated, see attenuated phase-shifting mask
chromeless, 13
dark-field illumination, 179
embedded, 148
halftone, 148
Levenson, see alternating phase-shifting mask
mask types, 12
rim, 12
photolithography, see optical lithography
photoresist, 18–23
acid diffusion length, 157
benefit of negative tone, 159
contrast, 21, 157
development, 23
grade, 157
negative, 21
positive, 21
tone, 180

point spread function, 168, 176
printing
impact on civilization, 1
three ingredients, 1
process window
mask bias, see mask bias, process window
quantification, see image quality quantification
projection printing, 15
proximity effect, 91
dark-field and light-field masks, 164
proximity printing, 14
pupil filtering, 175
quadrupole illumination, 84
weak, 84
raster-scan mask writer, 95
Rayleigh unit of defocus, 63
RELACS, 180
resolution enhancement technique
effects on overlay and alignment, 169
general applicability, 156
guidance based on experience, 169
strong, 141, 183
use of intuition, 160
weak, 141, 183
resolution limit, 185
coherent
isolated space, 37
periodic pattern, 39
contact hole, see contact hole,
 resolution limit
line, 61
nebulous, 59
optical lithography, 59
partially coherent, 53
Rayleigh's, 58

scanners, 16
selective line biasing, 94
serif, 100
sharp corners, 172
shot noise, 20
side lobe
 intensity, 145
 reduction, 168
 suppression, 145
side-lobe
 interaction with aberrations, 145
simulation
 aerial image, 157
 electromagnetic propagation, 126
 photoresist acid diffusion, 157
 photoresist development, 157
simultaneous printing of sparse and
dense patterns, 79
sinc function, 36
small σ, 79
space
 definition, 9
sparse pattern, 78
standing wave, 19
step-and-repeat systems, 15
step-and-scan systems, 16
steppers, 15
strong phase-shifting mask, see res-
 olution enhancement tech-
 nique, strong
strong resolution enhancement tech-
 nique, see resolution enhance-
 ment technique, strong
super-FLEX, 175
TCC, see transmission cross-coefficient
threshold resist model, 22
throughput
 $\sigma > 1$, 79
 alternating phase-shifting mask, 135
dark-field illumination, 179
 line narrowing, 28
 multiple exposure, 172
off-axis illumination, 89
traditional lithography, 30, 154
transmission cross-coefficient, 49
trend
 k_1 factor, see k_1 factor, trend
 process latitude, 172
trim mask
 alternating phase-shifting, 134
 sparse pattern, 173
two-beam imaging, 73
 attenuated phase-shifting mask, 143
 contrast, 83
 ideal duty ratio, 143
 ideal transmission, 145
 imbalance beam intensities, 83
 optimal illumination angle, 82
 spatial period, 73
UDOF, see usable depth of focus
unmodified illumination, 71
usable depth of focus, 64
vector-scan mask writer, 95
weak phase-shifting mask, see res-
 olution enhancement tech-
 nique, weak
weak resolution enhancement tech-
 nique, see resolution enhance-
 ment technique, weak
x-ray lithography, 26
Zernike polynomial, 128