Index

A

ABCD ray matrix, 46-54, 72-73, 116-172, 191, 205, 313-316, 341
and Huygens-Fresnel integral, 47, 341
table of, 47
Absorption (see atmospheric)
Aerosol scattering, 4
Airy disk, 347
Amplitude, 13, 74-75
fluctuations, 71-78
Angle-of-arrival, 28-29, 234
variance, 29
Anisoplanatism (see isoplanatic angle)
Aperture-averaging, 44-45, 167-199, 228-230, 313-318
beam wave, 189-195
factor, 44-45, 54, 167-168, 174, 182, 191, 212, 224, 229, 311-313, 358
plane wave, 45, 172-180
spherical wave, 180-189
Array,
detector, 226-234, 318-321, 328-332
(see also receiver)
Asymptotic theory, 38-41, 69, 98, 104, 128, 137, 153-155
Atmospheric,
absorption, 2, 4-5, 203, 211, 351
boundary layer, 2-4
coherece length, r_o, 8, 10, 53, 223, 226, 312, 355, 358
scattering, 2, 4-5, 203, 211, 351
transmission, 4-5, 202, 350, 358, 366
spectrum (see power spectrum)
turbulence (see turbulence)
Attenuation, 4, 350, 358, 366
Average,
ensemble, 17, 21, 75
irradiance (see mean irradiance)

B

Background, 346
Backscatter amplification effect, 277, 288, 291-293, 295-300, 306
Bandwidth, 201, 207, 209, 217, 282
Beam
scintillation, 16 (see also scintillation index)
spreading, 15, 203, 212, 234, 284, 286, 359-360
wander, 16, 29-30, 152
wave (see Gaussian-beam wave)
effective, 33-34, 151-152, 286-287
input plane (transmitter), 14, 49, 149, 169
output plane (receiver), 15, 49-50, 150-151, 170
Beam radius (spot size), 11, 14-15, 48, 149-150, 169, 194, 341
effective (long term), 28, 30, 31, 151, 203, 205, 215, 246, 286
short term, 29-30
Beckman distribution (see lognormal-Rician distribution)
Beer’s law, 5
Bessel function, 18, 23, 88, 90, 111, 113, 116, 150, 170-171, 218, 236, 244, 245, 264-265, 271-272, 313
Binary transmission, 234-239
amplitude shift keying (ASK), 238-239
frequency shift keying (FSK), 238
on-off keying (OOK), 235-237
phase shift keying (PSK), 238
Bistatic
channel, 60, 283, 293-294, 300-303, 307, 321, 326
system, 277, 283, 316, 355
Bit, 234
Bit error-rate (BER), 234-239
Bump spectrum (see Hill spectrum and modified atmospheric spectrum)

C

Carrier, 201
Carrier-to-noise ratio (CNR), 217, 219, 221-225, 232, 312, 328-330, 358, 365
gain factor, 329
Cell (see eddy)
Channel, 54, 283
communication, 203
double-pass, 54, 277, 337
laser satellite, 257-273
terrestrial, 252-257
Chirp radar, 281
Coherence, 16
 spatial, (see coherence radius)
Coherence diameter (see atmospheric coherence length, r_0)
Gaussian-beam wave, 25, 32-34, 286
 plane wave, 26
 spherical wave, 26
 strong fluctuations, 32-34
Coherent
detector (see detector, coherent)
 imaging system, 340-345
Collecting lens (see lens)
Communication system, 86-87, 201-239, 243
 laser satellite, 257-273
Complex degree of coherence, 23, 26
Complex phase perturbation, 17, 19, 79-80
 folded path, 277
 reciprocal path, 277
Conditional density function, 212-213, 225-226, 244-245
Confluent hypergeometric function, 28, 43, 53, 111, 113, 196, 265, 272
Conformal transformation, 15
Correlation
 between incident and reflected waves, 56-59, 277, 289, 304
Correlation function
 amplitude enhancement, 56-59, 288
Correlation width of irradiance fluctuations, 43, 110, 174, 176, 205, 266, 273, 287
 normalized, 43, 112, 167
Cross-coherence function (see fourth-order moment)
Crossings per second (see number of crossings)
Cumulative probability density, 91, 246-247
Current
 intermediate frequency, 215-218, 319-320
 noise, 206, 311
 signal, 206, 311
D
Decibel (dB), 212
Delta function, 245, 247-248, 339
Demodulation, 201
Detector, 203
 array, 226-234
 coherent, 203, 214-226, 248, 312-313, 358
direct (incoherent), 203-214, 247, 311-312, 358
 envelope (see envelope detector)
 point, 205
 quantum efficiency, 206
 noise, 204, 235
Diffraction
 angle, 71-72
 scattering, 71, 76
Diffuse surface (see target, diffuse)
 Digital transmission, 234, 237
 Dissipation range, 6
 Doppler
 frequency shift, 280-282
 radar, 278
 Double-pass propagation, 54-62, 277, 285, 288-290, 337
 Downlink path, 257-267
E
Earth’s atmosphere, 2-4
 C_n^2 profile of, 8
Echo signal (wave), 278
Eddy, 6, 69, 71-78
Electromagnetic spectrum, 202
Electro-optic system, 337
Energy cascade theory, 6
 Enhanced backscatter, 54, 277, 288, 291-293, 298-299, 306
 Ensemble average, 17, 21, 75
 Envelope detector, 217-220, 222-226, 358
 Equal gain (EG) receiver, 231-234, 318-331
 Error function, 208, 212, 235-236, 246, 311
 Expected number of fades (surges), 213, 243, 247-252
 Extended Huygens-Fresnel principle, 16, 19-21, 31
 Extinction coefficient, 5, 211, 280
F
Fade
 probability of, 209, 213, 225, 243-247, 252-255, 266, 273, 324-325, 330-332
 threshold parameter, 246, 266, 324, 331
False alarm, 205
 rate (FAR), 209, 219, 221, 236
 (see also probability of)
 Far field, 27, 37, 279
Index

Field of view (FOV), 279, 283, 342, 350
Filter model, 83-84, 204, 259-260
 large-scale, 84, 99, 155, 162, 172
 low-pass, 217, 219, 223, 312
 small-scale, 84, 99, 155-156, 174
Focal
 distance (eddy), 73
 plane, 195
Focusing
 angle, 71-72
 regime, 38, 67, 77-78, 174
Folded path, 277-278
Fourier transform, 339
 convolution, 340
 inverse, 339
Fourth-order moment, 17, 20-21, 59
Fractional fade time (see probability of fade)
Frequency
 filter cutoff, 84, 100-101, 106, 128-129,
 157, 160, 176, 261-262, 269-270, 348,
 351
 spatial, 53, 82-83, 342
Frequency of
 fades and surges, 209-210, 213, 220-221
Fresnel zone size, 30, 44, 69, 82, 110, 120,
 142, 174, 180, 198, 288
Fried parameter (see atmospheric coherence length, \(r_0 \))
Frozen turbulence hypothesis, 115, 195, 284

G
Gamma distribution, 88, 90, 244, 250-252,
 331
 joint (time derivative), 250-251
Gamma function, 88, 219
Gamma-gamma distribution, 89-92, 116-124,
 139-147, 236, 244, 247, 251-252, 324
 cumulative distribution, 91, 247
 joint (time derivative), 252
 parameters, 91, 120, 140, 237, 244, 324,
 327-328, 330-331
Gaussian
 aperture, 53, 171, 233
 lens, 48-52, 205, 314, 342-343
 mirror, 54-55, 314
Gaussian-beam wave, 11-13, 15-17, 48, 149,
 214, 283, 295, 341
 collimated, 13
 convergent, 13
 definition of, 11-13
 divergent, 13
 fourth-order moment for, (see fourth-order moment)
 free-space irradiance for, 50, 205
 irradiance covariance function for
 (see covariance function of irradiance)
 lowest order (\(\text{TEM}_{00} \)), 11-13
 mean irradiance for (see mean irradiance)
 mutual coherence function for (see mutual coherence function, beam wave)
 parameters for (see beam parameters)
 scintillation index for (see scintillation index, beam wave)
 wave structure function for (see wave structure function, beam wave)
Gaussian distribution, 79-80, 208, 210, 235,
 248
 joint (time derivative), 248
Geometrical optics approximation, 29-30, 39,
 99-100, 110, 153, 190, 262
Generalized hypergeometric function, 91, 139, 155, 247
Geostationary orbit (GEO), 263, 266, 273
Green’s function,
 for Huygen-Fresnel integral, 13
generalized, 47

H
Helmholtz equation, 16
Heterodyne
 detection (see coherent detector)
efficiency, 218
Hill spectrum, 11
Homodyne detection, 214
Homogeneous and isotropic turbulence, 7, 18-19
Hufnagle-Valley turbulence model, 8, 258, 266
Huygens-Fresnel integral, 13
 extended, 16
 generalized, 47, 341
Hypergeometric function, 36, 155,
 confluent, 28, 43, 53, 111, 113, 196, 265,
 272
generalized, 91, 139, 155, 247

I
Image
 blurring, 350
 dancing, 16, 29
 plane, 52
 resolution, 348-350
 Imaging
 coherent system, 340-345
Index of refraction, 2
fluctuations, 2, 6, 69-71
inner scale for, 6
outer scale for, 6
profile model for, 8, 258
structure constant, 2, 7-9, 67
structure function, 7
Inertial range, 6, 11, 32, 70
Inner scale of turbulence, 6-9, 85-86, 104-107, 131-134, 158-161, 182-184, 192-194, 258
Intensity (see irradiance)
Intermediate frequency (IF), 214-218, 221-222
signal current for, 215-218, 319-320
Ionosphere, 3
Irradiance, 50, 205, 211, 215, 222
backscattered, 58, 288
fluctuations, 2, 16, 67, 167-168, 211, 277
(see also scintillation index)
mean (see mean irradiance)
moments, 35, 233
Irradiance flux
covariance, 170-171
variance, 168, 172, 174, 176, 178, 182, 183, 185, 191, 193, 195, 318
Isoplanatic angle, 8, 10
Isotropic medium, 7
K
K distribution, 87-89, 120-121
Kolmogorov spectrum, 10, 70, 98, 128
effective, 99, 128, 155
Kummer function (see confluent hypergeometric function)
L
Lambertian surface (see target, diffuse)
Laser imaging radar, 353-354
Laser radar, 277-278
Lasercom (see communication system)
Lens
Gaussian model, 48-52, 205, 314, 342-343
law, 170, 344
Lidar (see laser radar)
Linear
combining methods, 231-234
FM ranging, 282
rectifier, 217, 219
shift-invariant system, 338-341
Local oscillator (LO), 214
Log amplitude, 79, 87
variance, 34, 75, 81
Log-irradiance variance, 34, 81, 97, 127, 150, 155, 291-292
Lognormal distribution, 80, 7, 120-121, 246, 248-250
cumulative distribution, 246
joint (time derivative), 249
Lognormal-Rician distribution, 89, 141-146
Longitudinal phase shift, 215
Long-term beam spread, 28-30
Low earth orbit (LEO), 263, 266, 273
Low-pass filter, 217, 219, 223, 312
M
Marquand Q-function, 219, 238
Maximal ratio (MR) receiver, 231
Maximum unambiguous range, 280
Maximum unambiguous velocity, 281
Mean
field, 17, 19-20
signal current, 211
signal power, 211
Mean irradiance, 27-28, 222, 246
double-pass, 58
strong fluctuations, 31-32
weak fluctuations, 27-28
Mean fade time, 243, 255-257
Mesosphere, 3
Mie scattering, 4
Missed detection (see probability of fade)
Modified atmospheric spectrum, 11, 70, 104, 131, 175
effective, 105, 132
Modified Rytov theory, 79-81, 99, 128
Modified von Kármán spectrum (see Von Kármán spectrum)
Modulation, 201, 288, 309
process, 79-82, 234-244, 289
Modulation transfer function (MTF), 338, 346-355, 363-364
aerosol, 351, 355
atmospheric, 351-352, 355
target, 364
Moments,
fourth-order, 17, 20-21, 59
irradiance, 27-28, 31-32, 58, 87, 233
mean field, 17, 19-20
mutual coherence function (see mutual coherence function)
Index

Monostatic
 channel, 54, 60, 283, 294-295, 303-305, 308, 318
 system, 277, 283, 357
Mutual coherence function (MCF), 17, 20, 22-25, 31-34, 222, 286
double-pass, 55-59, 361-362
free space, 22
Gaussian-beam wave, 22, 24
plane wave, 23-24
spherical wave, 23-24
strong fluctuations, 31-34

N
Narrowband noise, 217, 234
Near field, 37
Negative exponential distribution, 88
 joint (time derivative), 250
Noise,
 background, 204, 226
current, 204, 206, 228
electronic, 204
power, 207, 211, 219, 312
shot (detector), 204, 214
Noncoherent detector (see detector, direct)
Number of crossings (fades), 209, 213-214, 221, 226, 243, 247-252

O
On-off keying (OOK), 235-237
Optical communications, 86-87, 201-239, 243, 257-273, 337
Optical depth, 5
Optical transfer function (OTF), 52-53, 338, 347
Optical turbulence, 2, 5-10
definition of, 7
Outer scale of turbulence, 6-7, 86, 108, 135, 162, 177-178, 184-185, 194-195, 258

P
Passive scalar, 6
Paraxial
 approximation, 13, 127, 149
Perturbation method (see Rytov approximation)
Phase
 longitudinal, 215
 perturbation, 79-80 (see also complex phase perturbation)
 structure function, 29, 38, 153-154, 259
 transfer function, 347
Phase front radius of curvature, 11, 14-15, 48, 149-152, 169, 341
Photodetector (see detector)
Photon noise-limited, 207
Pixel, 357
SNR for, 357-359, 364-367
Plane wave, 97
covariance function, 43, 111, 113
mutual coherence function, 23-24
scintillation index, 36, 39-40, 101, 104, 107, 109
structure function, 23-24, 40
Point
detector, 205, 318
reflector (see target, point)
source (see spherical wave)
Point spread function (PSF), 52, 338, 346-348
Poisson statistics, 208
Power, 167, 206, 211
detector (see detector, direct)
local oscillator (LO), 215
fluctuations, 167, 228, 244
mean, 167, 311
signal, 206, 211, 215, 311, 329
noise, 207, 211
Power spectral density (see power spectrum)
Power spectrum, 10-11
effective, 99, 105, 128, 132, 155
Hill spectrum, 11
Kolmogorov, 10, 70, 98, 128
modified atmospheric, 11, 70, 104, 131
Tatarskii, 11, 70
von Kármán, 11, 163
Probability density function, 86-92
Gamma distribution, 88, 90, 244, 250-251, 331
Gamma-gamma distribution, 89-92, 116-124, 139-147, 236, 244, 247, 251-252, 324
Gaussian distribution, 208, 210, 248
K distribution, 87-89, 120-121
lognormal distribution, 87, 120-121, 246, 248-250
lognormal-Rician distribution, 89, 141-146
negative exponential distribution, 88
Rayleigh distribution, 218
Rician distribution, 218
Probability
 of detection, 207-208, 243, 311-313
 of fade, 209, 213, 225, 243-247, 252-255, 266, 273, 324-325, 330-332
of false alarm, 207-208, 311, 313
of error (see bit error-rate)

Propagation
ABCD optical system (see ABCD ray matrix)
double-pass, 54-62, 277, 337
parameter, 13

Pulse
Doppler radar, 278
repetition interval, 278
repetition frequency, 278
delay ranging, 280
length, 281

Pulse compression techniques, 281-282

Q
Quantum efficiency, 206
Quasifrequency, 210, 221, 249, 251

R
Radar, 219, 278-283
(see also laser radar)
Random medium, 14, 68
Range
equation, 279
rate, 280
resolution, 281
Ray matrix (see ABCD ray matrix)
Rayleigh
criterion, 348-349
distribution, 218, 231, 238
scattering, 4
Receiver
beam parameters (see beam parameters, receiver)
spatial diversity, 226-234
(see also detector)
Reciprocal path, 277-278
Reflector (see target)
Refractive index (see index of refraction)
Refractive scattering, 71, 76
Resolution, 337, 348-350
range (see range resolution)
Rice-Nakagami distribution (see Rician distribution)
Rician distribution, 218, 238
Rytov approximation, 16-19, 79, 97-98
modified, 79-81, 99
statistical moments of, 17-18
Rytov variance, 1, 36
for beam wave, 155, 157
for plane wave, 1, 36, 67, 98, 128, 130, 260, 286, 323, 327
for spherical wave, 36, 130

S
Satellite laser communication system, 257-273
Saturation regime, 38, 67-69, 77, 98, 153
Scattering disk, 71, 82, 174, 198
Scattering
aerosol, 4
Mie, 4
Rayleigh, 4
Scintillation index, 34-41, 53, 67-69, 81-82, 97, 128-129, 150
downlink channel, 260-264
Gaussian-beam wave, 36-37, 157, 159, 160, 162, 287
large-scale, 82, 100, 106, 129, 132, 140-141, 156, 160, 162, 262-263, 269-270
longitudinal component, 36, 150
plane wave, 36, 39-40, 101, 104, 107, 109, 263
radial component, 36, 150, 152
residual, 317
small-scale, 82, 101, 107, 130, 133, 140-141, 156, 261, 268-269
spherical wave, 36, 39, 41, 53, 130, 133, 135, 270
strong fluctuations, 38-41, 98, 104, 128
uplink channel, 268-273
weak fluctuations, 35-38
Seeing, 337, 353
Signal
current, 206, 215-218
intermediate (IF), (see intermediate frequency)
power, 206, 211, 215, 311, 329
Signal-to-noise ratio (SNR), 203, 205, 207, 212, 219-220, 224, 228, 311, 312, 338, 350, 365
single pixel, 357-359, 364-367
Soft aperture (see Gaussian aperture)
Spatial coherence radius (see coherence radius)
Speckle, 318-319, 362
reflection coefficient, 361
size, 363
target, 318, 326, 331, 338, 350, 362, 365
Spectrum (see power spectrum), electromagnetic, 202
temporal (see temporal spectrum)
covariance function, 43
mutual coherence function, 23-24
scintillation index, 36, 39, 41, 53, 130, 133, 135, 270, 294
structure function, 23-24
Spot size (see beam radius)
Square-law device, 217, 219, 223, 312
Stratosphere, 3
Strehl ratio, 53, 212
Strong fluctuations, 2, 16, 71, 77, 82, 179-180, 189, 286, 289
Structure constant, 2, 7-10, 16, 67, 71, 77, 82
Hufnagle-Valley model for, 8, 258, 266
Structure function,
index of refraction, 4
phase (see phase, structure function)
wave (see wave structure function)
Structure parameter (see structure constant)
System function (see transfer function)

T
Target
classification, 282-283
definition of, 346
Diffuse (Lambert), 54, 58, 60, 279, 282, 306-310, 319, 326-332, 354, 359-367
Gaussian, 54-55, 283, 285
point, 54, 56, 59, 282, 290-305, 317, 319, 321-326
resolved, 283
smooth, 314
specular, 282, 285, 354
speckle, 318, 326, 331, 338, 350, 365-366
statistical model for, 360-363
unresolved, 282-283, 290-305, 354-359
Tatarskii spectrum, 11, 70
Taylor frozen turbulence hypothesis, 115, 195, 284
Temporal spectrum, 115-116, 195-199, 248
Terrestrial link, 252-257
Thermosphere, 3
Threshold, 205, 208, 219, 244-245
detection, 205-209, 211-226, 311-317
fade parameter, 246, 266, 324, 331
-to-noise ratio (TNR), 209, 238
Tilt, 350, 360
Transceiver, 54, 277, 283
Transfer function, 338, 340
Transmittance, 4-5, 350, 358, 366
Transmitter beam parameters (see beam parameters, transmitter)
Tropopause, 3
Troposphere, 3
Turbulence, 6, 203
cascade theory, 6
dissipation range, 6
eddy, 6, 71-78
inertial range, 6, 11, 70
inner scale (see inner scale of turbulence)
Kolmogorov theory, 6
outer scale (see outer scale of turbulence)
Two-thirds law, 7

U
Uplink path, 268-273

V
Variance,
of angle-of-arrival fluctuations, 29
of log-amplitude fluctuations, 34, 75, 81, 97, 127
von Kármán spectrum, 11, 163

W
Wander (see beam wander)
Wave equation, 16
Wavefront radius of curvature (see phase front radius of curvature)
Wave number, 2, 67
Wave structure function,
Gaussian-beam wave, 23
plane wave, 23-24, 222
spherical wave, 23-24, 56
Wavelength, 2, 67
Weak fluctuations, 2, 16, 76, 82, 174, 179, 188, 286, 288, 356

Z
Zenith angle, 258
Zero crossings (see frequency of fade and number of crossings)
Larry C. Andrews is a professor of mathematics at the University of Central Florida, an associate member of the School of Optics/CREOL, and an associate member of the Florida Space Institute (FSI). Previously, he held a faculty position at Tri-State University and was a staff mathematician with the Magnavox Company, antisubmarine warfare (ASW) operation. He received a doctoral degree in theoretical mechanics in 1970 from Michigan State University. Dr. Andrews has been an active researcher in optical wave propagation through random media for over 20 years and is the sole or principal author of several mathematics textbooks: differential equations, boundary value problems, special functions, and integral transforms. He is also coauthor of the textbook *Laser Beam Propagation through Random Media* (SPIE Press, 1998). Along with wave propagation through random media, his research interests include special functions, random variables, atmospheric turbulence, and signal processing.

Ronald L. Phillips is Director of the Florida Space Institute (FSI) and a professor in the School of Electrical Engineering and Computer Science at the University of Central Florida. Dr. Phillips is also a member of the Department of Mathematics and an associate member of the School of Optics/CREOL. He has held positions on the faculties at Arizona State University and the University of California, San Diego. He received a doctoral degree in Electrical Engineering in 1970 from Arizona State University. Dr. Phillips has been an active researcher in wave propagation through random media for more than 25 years. He was awarded a Senior NATO Postdoctoral Fellow in 1977 and the American Society for Engineering Education 1983 Medal for outstanding contributions in research. Dr. Phillips is coauthor of the textbook *Laser Beam Propagation through Random Media* (SPIE Press, 1998). In addition to optical wave propagation, his research interests include optical communications and imaging through atmospheric turbulence.

Cynthia Y. Hopen is a Professor of Mathematics and a Research Scientist for the Florida Space Institute at the University of Central Florida. She holds a B.A. in Mathematics Education from the University of North Carolina, M.S. in Mathematical Science from the University of Central Florida, and M.S. in Electrical Engineering and Ph.D. in Applied Mathematics from the University of Washington, Seattle, WA. Dr. Hopen was awarded a National Physical Science Consortium doctoral fellowship with the Kennedy Space Center (KSC) as her sponsor. She has worked with chemists in the Material Science Division and physicists in the Optics Lab at KSC. In 1997 she joined the faculty at FSI/UCF where she presently is doing research in the area of laser communications and laser radar. She has worked on laser satellite communication projects through the Navy and laser radar projects for the Air Force. In 2001 she was awarded the Young Investigator Award from the Office of Naval Research.