Index

Applications
- commercial, 84
- military, 83
- paramilitary, 84

Comparison of principal types of uncooled thermal detectors, 86

Detection mechanisms
- photon, 2
- thermal, 4
- wave interaction, 6

Figures of merit: definitions
- detectivity D^*, 7
- electrical response time, 53
- minimum resolvable temperature difference, 9
- noise equivalent power, 7
- noise equivalent temperature difference, 8
- responsivity, 7
- thermal response time, 9

Fundamental limits
- background fluctuation noise, 11, 20
- temperature fluctuation noise, 14, 20

Heat flow equations
- Case I: unbiased, 27, 34, 61
- Case II: continuous bias, 35
- Case III: pulse bias, 40

Noise
- background fluctuation, 12, 20
- Johnson, 30, 42, 54

1/f power law, 42
- temperature fluctuation, 14, 20, 43, 55

Pixel structure
- monolithic, 27, 33, 50, 58
- hybrid, 68

Pyroelectric and ferroelectric bolometer arrays
- hybrid ferroelectric bolometer arrays, 67
- monolithic pyroelectric arrays, 49, 72

Resistive bolometer arrays
- materials, 45, 64
- theory, 33

State-of-the-art
- ferroelectric bolometer imager, 67
- resistive bolometer imagers, 57
- thermoelectric imaging radiometer, 75

Technical trends
- commercial, 78
- military, 77

Thermal detector comparison, 86

Thermoelectric arrays
- materials, 32
- theory, 25
Paul W. Kruse received his PhD in Physics from the University of Notre Dame in 1954. Most of his career has been spent at the Honeywell Technology Center where he was Chief Research Fellow prior to his retirement in 1993. He then became a founder and Chief Scientist of Infrared Solutions, Inc. He has now retired from Infrared Solutions and is a consultant on infrared technology. He has more than 45 years experience in the development of detectors and focal plane arrays including not only those based on photon effects, but also uncooled thermal effects. In addition to being the author of Uncooled Thermal Imaging Arrays, Systems, and Applications, he is the co-author of Elements of Infrared Technology, co-editor of Uncooled Infrared Imaging Arrays and Systems, and author of more than 100 other scientific publications. He is a Fellow of the American Physical Society and the Optical Society of America.