Index

actuator influence functions, 184
diffraction-limited depth-of-focus, 173
adaptive optical system, 183
effective properties, 72, 83, 87, 91–94, 97–98
adaptive optics, 202
elasticity, 4
adaptive PM, 215
equivalent-stiffness, 71, 75–85
adhesive bonds, 87, 91, 97
electric field vector, 37, 152
air bags, 109
encircled energy, 42, 160–161
Airy disk, 40
f-number, 41
aspheric polynomials, 62–63, 222
failure theories, 24
assembly, 104, 123–127
finite element theory, 11
augment actuators, 186
flexures, 81, 99, 102–107, 123–126
adapted actuator, 186
focus error, 171–173, 225
automeshing, 70
Fourier’s law, 179
Beer’s law, 177
frequency domain, 48
bending moment of inertia, 74, 81
grid sag surface, 136
blur diameter, 40
harmonic response, 28
boresight error, 127
finite element theory, 11
aspheric polynomials, 62–63, 222
bulk volumetric absorption, 177, 220
coefficient of moisture expansion, 117, 180
coefficient of thermal expansion, 165–166
cell shapes, 71, 72
coating-cure shrinkage, 116, 121–123
cell size, 72, 73
coating-moisture absorption, 117
correctability, 184–191
cutting-off frequency, 45
damping, 31, 34
delaunay triangulation, 138
design optimization, 77–80, 189, 193
design sensitivity, 195, 199, 204
diffraction, 40, 160–162
diffraction-limited, 41, 173
diffraction-limited depth-of-focus, 173
Delaunay triangulation, 138
fourier coefficients, 61
Index

actuator influence functions, 184
diffraction-limited depth-of-focus, 173
adaptive optical system, 183
effective properties, 72, 83, 87, 91–94, 97–98
adaptive optics, 202
elasticity, 4
adaptive PM, 215
equivalent-stiffness, 71, 75–85
adhesive bonds, 87, 91, 97
electric field vector, 37, 152
air bags, 109
encircled energy, 42, 160–161
Airy disk, 40
f-number, 41
aspheric polynomials, 62–63, 222
failure theories, 24
assembly, 104, 123–127
augment actuators, 186
automeshing, 70
Beer’s law, 177
bending moment of inertia, 74, 81
blur diameter, 40
boresight error, 127
bulk volumetric absorption, 177, 220
cell shapes, 71, 72
cell size, 72, 73
coefficient of moisture expansion, 117, 180
coefficient of thermal expansion, 165–166
coating-cure shrinkage, 116, 121–123
coating-moisture absorption, 117
coatings, 117
correctability, 184–191
cutting-off frequency, 45
damping, 31, 34
Delaunay triangulation, 138
design optimization, 77–80, 189, 193
design sensitivity, 195, 199, 204
diffraction, 40, 160–162
diffraction-limited, 41, 173
diffraction-limited depth-of-focus, 173
Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 24 Oct 2019
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use
lightweight mirror, 70
line-of-sight error, 127
line-of-sight jitter, 140–147

mass density, 72–74, 78–80
material coordinate system, 79, 95–97
maximum modulus, 89–92, 96
membrane thickness, 73–74, 81
modal analysis, 29
mode shapes, 20, 28–29
model checkout, 32
modulation transfer function, 44–46, 50, 226–227
Mohr’s circle, 9
multidisciplinary design optimization (MDO), 203

natural frequencies, 28, 212
neutral plane, 72–75, 81, 101–102
nonstructural mass, 75, 82
nonlinear programming, 195–196

obscuration, 127, 160–162
optical frequency, 36
optical path difference (OPD), 39, 169, 174–175
optical path length (OPL), 38
optical transfer function (OTF), 46–48
optimization, 195–196, 200–205, 214, 217
opto-thermal expansion coefficient, 171
orthotropic materials, 7

phase, 36
phase transfer function, 50
plane strain, 8
plane stress, 6, 7
point spread function, 42, 226–227
polarization, 36–38, 148, 152, 156–159

power spectral density (PSD), 30
principal stress, 9, 151
pseudo-kinematic mounting, 99
quilting, 66, 75, 202
radius of curvature, 132, 139
random response, 30, 209
rays, 38
redundant mounting, 99, 106
resolution, 43–44
rigid-body error, 32, 127–128
ring bonds, 97–100
roller-chain test supports, 116

sag deformations, 132
Sellmeier dispersion equation, 170
shape function, 11
shape function interpolation, 138, 179–180
shape optimization, 79
single-point model, 67
sling test supports, 116
solid optics, 68
solidity ratio, 72–73, 81
spatial domain, 47
spot diagrams, 41–42, 140
stress analysis, 23
stress birefringence, 148–159, 223
stress intensity, 24
stress-optical coefficient, 150–154, 224
structural analysis, 15
surface effects, 116–120
surface normal deformation, 131
symmetry, 18, 22
tangency, 109–113
test supports, 107–115
thermal analysis, 16–17
thermal-glass constant, 171–173
thermal soak, 33
thermo-elastic expansion, 67, 104, 165–168
thermo-optic coefficient, 168–176, 224
thermo-optic constant, 173
three-dimensional element models, 69
transfer function, 29
transverse shear factor, 68
two-dimensional models, 68
Twyman effect, 117, 120, 127

unstable mounting, 99

V-block, 115
vibration, 28

wavefront, 38–40
wavelength, 36

x-y polynomials, 62–63

Zernike polynomials, 50–51, 133–135, 174–175, 223–225
Dr. Keith Doyle has over 15 years experience in the field of optical engineering, specializing in optomechanics and the multidisciplinary modeling of optical systems. He has worked on a diverse range of optical instruments including ground, aerial, and space-borne optics for astronomical and military applications, as well as optical systems for the microlithography, telecommunications, and consumer optics industries. He is currently employed as a Senior Systems Engineer at Optical Research Associates. Previous employers include Litton/Itek Optical Systems and MIT/Lincoln Laboratory. Dr. Doyle is an active organizer and participant in SPIE and OSA symposia. He provides technical reviews for Applied Optics, teaches short courses on a regular basis, and has authored and co-authored over 20 technical papers in optical engineering. He received his Ph.D. from the University of Arizona in Engineering Mechanics with a minor in the Optical Sciences in 1993.

Dr. Victor Genberg PE has over 35 years of experience in the application of finite element methods to high-performance optical structures, and is a recognized expert in optomechanics. He is currently President of Sigmadyne, Inc., an optical engineering consulting group that provides product design, development, and analysis to the optical community. Prior to starting Sigmadyne, Dr. Genberg worked at Eastman Kodak for 28 years serving as a technical specialist for commercial and military optical instruments. He is the author of SigFit, a commercially available software product for optomechanical analysis. Dr. Genberg is also a full professor (adjunct) of mechanical engineering at the University of Rochester where he teaches a variety of courses in finite elements, design, and optimization. He has over 30 publications, including two chapters in the CRC Handbook of Optomechanical Engineering. He received his Ph.D. from Case Western Reserve University in 1973.

Gregory Michels PE has worked for over 10 years in optomechanical design and analysis, and is currently Vice President of Sigmadyne, Inc. He specializes in computer-aided engineering, including finite element analysis, mathematical modeling, and design optimization as applied to high-performance optical instruments. Mr. Michels is also a technical contributor to Sigmadyne’s product SigFit. Prior to joining Sigmadyne, he worked at Eastman Kodak for 5 years as a structural analyst on the Chandra X-Ray Observatory. Mr. Michels has authored or co-authored over 10 papers in this field and teaches short courses on finite element analysis and integrated modeling. He received his MS degree in mechanical engineering from the University of Rochester in 1994.