Index

1 × 2 beamsplitter, 118
1 × 2 grating, 31, 84, 86
1 × 3 beamsplitter, 86
1 × 3 grating, 84, 86–87, 91
1 × 5 Dammann grating, 123, 180, 182
1 × 12 parallel array, 232
1 × N gratings, 88
9 × 9 spot array generator, 181, 222
1-to-N mapping, 83
1-to-1 wavefront mapping, 83
1-to-3 mapping, 83
Abbe V-number, 61
aberration polynomial, 187
aberrations, 58, 88, 129
absorption parameter A, 134
absorption parameter B, 134
achromatic condition, 209
adhesion promoters, 135
amplitude modulation, 95
antireflection coating (ARC), 124, 139, 227
antireflective condition, 227
antireflection surface, 5, 227
aperture stop, 58, 191, 193
array technique, 90
array testing, 179
aspect ratio, 123
astigmatism, 63, 187–188, 191–192, 194, 198, 201
athermal achromat, 210
athermal design, 209
atomic force microscope (AFM), 171–172
beam deflectors, 220
beam fanouts, 182
beam homogenizers, 217
beam sampler, 4, 221
beam shaper, 232
beam shaping, 218, 232
beam steering, 215
beamsplitter, 13, 84, 86, 118
bending parameter, 188
bidirectional algorithm, 96–97, 99–100, 102, 104, 111
bidirectional optimization, 98, 104
binary grating, 14, 84, 173
binary lithographic masks, 137–138, 143
binary mask, 14, 71, 74, 81, 145
binary optic, 2, 143–144
binary phase Dammann grating, 139
binary phase grating, 30, 84, 86–88, 118
binary phase structure, 115
binary technique, 90
binary transmission masks, 117, 119
birefringent elements, 5
blazed grating, 11, 12, 28, 31–32, 55, 67, 71, 87, 157, 169, 228
blazed grating efficiency, 34
blind prospector, 99–100, 104, 110
Bragg condition, 46
casting, 159–160
CCD array, 176
central difference equations, 51
color correction, 81, 205, 209
coloration, 81, 205, 209
detuning parameter, 72
detuning parameter, 72
detuning parameter, 72
deviation, 123
charge-coupled devices (CCD), 176–177, 181, 216
chemically assisted ion beam etching (CAIBE), 143
chief ray, 189
casting, 159–160
chromatic aberration, 60–61, 65–66, 76, 78
chromatic aberration correction, 62, 76
chromatic correction, 76
clean room, 127, 129
cleaning, 130
cleaning procedures, 131
CODE V, 79
coefficient of thermal defocus (CTD), 207–209
coefficient of thermal expansion (CTE), 207–209
color correction, 81, 205, 209
coloration, 81, 205, 209
comic function, 26, 28, 33, 85
computer-generated holography, 121
conductivity, 52
conjugate parameter, 188
coupling projection lithography, 152
coupled-angle diffusers, 224, 225
convolution, 24–25, 40, 84
convolution theorem, 26
cooke triplet, 194
cooling rate, 104
correct chromatic aberration, 80
curvature, 60, 201
Dammann grating, 13–14, 91, 123, 139, 180–183
data (datacom), 231–232
data communications, 231
delta function, 25–26, 84
descumming, 139
design algorithms, 91
design wavelength, 72–73
detector array, 217
detuning parameter, 72
development, 136–137
diamond turning, 157
dielectric interface, 54
diffraction, 8, 20
diffraction efficiency, 29, 174
diffraction grating, 4
diffractive array measurements, 179
diffractive beam shaper, 111, 173, 218
diffractive landscape lens, 194
diffractive lens, 3, 11–12, 67, 72, 75–77, 79, 190
diffractive lens array, 4, 215
diffractive optical element (DOE), 2
diffractive optics lens, 74
diffractive profile, 78
diffractive structure, 3
diffractive surface, 3, 80
diffractive telescopes, 195
Dill parameters, 134
dimensional measurements, 167
Dirac delta function, 25, 84
direct electron-beam writing, 154
direct inversion, 92–93, 95, 100, 104
direct machining, 121, 149, 156–157, 159
direct writing, 149, 162
direct-write systems, 150
direct-write techniques, 154–155, 158
dispersion, 3, 11, 60–62, 76, 198
distortion, 187–188, 191–192, 194
dry etching, 150
dry etching techniques, 141–142
duty cycle, 84, 86–87
e-beam direct-write systems, 149
effective medium theory (EMT), 53–54, 225
efficiency, 66
eigenfunction expansion, 55
elastomeric compounds, 161
electromagnetic behavior, 37
electron beam writers, 119
electron beam-written masks, 144
embossing, 159
encoding, 90–91, 96
entrance pupil, 58, 204
environment, 125
equipment, 125
Erfle eyepiece, 204–206
errors, 182
etch chemistries, 142
etch depth, 70, 73, 84
etch depth errors, 182
etch selectivity, 142
etching, 141–143
exposure, 136–137
extended scalar theory, 32, 34
eyepiece, 203–205

\( f \)-number, 59, 75
\( f - \theta \) lens, 191

fabrication, 14, 66, 115, 121, 125, 127, 149, 184
fabrication blazed grating, 15
fabrication constraint, 121
fabrication errors, 180, 182
fabrication methods, 162
facilities, 125
fanout grating, 6, 14, 88
“far-field” approximation, 21
fast Fourier transform (FFT), 26
feature dimensions, 167
feature widths, 168
field curvature, 64, 187–188, 191, 194, 200
field points, 57
figure of merit, 97
fill factor, 33
finite-difference time-domain (FDTD) method, 37, 44–45, 49–53
first-order mask, 75
flat-top generators, 219
focused ion beam (FIB), 172
focused ion beam (FIB) milling, 158
focusing, 20
focusing beam shapers, 218
four-level diffractive lens, 71
four-level grating, 91
Fourier transform, 23, 26–28
Fresnel lens, 7
Fresnel phase, 11
Fresnel phase lens, 71
Fresnel phase plate, 10, 66–67
Fresnel zone plate, 10
Fresnel zones, 8–9, 67–68
Galilean telescope, 215
Gaussian to flat-top converter, 218
genetic algorithm, 105–110
Gerchberg and Saxton, 96–97
Gerchberg–Saxton algorithm, 97
gradient index (GRIN) optical fibers, 232
grating depth, 86
grating equation, 4, 28, 84, 118
gray-scale lithography, 149, 151–155, 162
Green’s function, 40
hardbake, 139
Helmholtz equation, 19
hexamethydisalizane (HMDS), 135
holographic methods, 121
holographic optical element, 2, 189
homogenization, 218
Huygens, Christian, 7
Huygens construction, 8, 20, 40
hybrid design, 210
hybrid lens, 3, 75, 77, 80, 187, 200
hybrid optics, 75
infrared, 203
infrared imagers, 195
infrared objectives, 201
infrared telescopes, 203
integration, 229
interferometric exposure, 149, 151
interferometric fabrication, 151, 154
ion milling, 142
IR Petzval imaging lens, 202
irradiance distribution, 176, 178
irradiance pattern, 179
jelly donut, 129
Keplerian telescope, 195
kinetic etching, 142
kinoform, 2, 10, 12, 70–71, 79, 197
kinoform lens, 12, 69, 72
Kirchhoff integral, 19
landscape lens, 193
laser ablation technique, 158
laser direct writing, 150, 155
laser direct-write systems, 149
laser drilling, 222
laser resonator design, 220
laser scanner, 191–192
lateral color, 200
lens, 3
lens arrays, 214, 216
lens design, 187
lens design programs, 69
lensmaker’s equation, 59–61
level-one mask, 74
lithographic masks, 119, 127, 146
lithographic methods, 121, 126, 149, 159
local grating period, 76
long-wavelength, 203
longitudinal spherical aberration (LSA), 63
low-contrast photoresist, 138
LWIR telescope, 203–204
magnifier, 203
mapping, 83
marginal ray, 63, 189
mask foundries, 119
materials, 125
Mathematica, 69, 81
Maxwell’s equations, 17–18, 39, 52
mean-square-error (MSE), 98
MEBES format, 120
mechanical profilometry, 168–169, 171
mechanical ruling, 156–157
merit function, 57, 98–100, 102, 105–107, 111
metrological tests, 167
metrology, 167
micro-optical systems, 230
microcontact printing, 161–162
microelectromechanical system (MEMS), 214
microlens, 215–216, 228
microlens array, 177, 214–216
microtransfer molding, 161
middle infrared band (MIR), 201
minimum feature size, 75, 123
modal method, 37, 45–46, 49, 53
modules, 229
molding, 159
moth’s-eye structure, 5–6, 227
multilevel diffractive lenses, 71
multilevel phase gratings, 88
multiple lens applications, 214
Nth-level mask, 71, 75
near-field holography (NFH), 149, 154–155
net curvature, 60
nondeterministic algorithms, 100
null corrector, 3–4
optical communications, 230–231
optical comparators, 168
optical coupling, 214
optical design, 121
optical design programs, 77–78
optical interconnect, 4–5
optical invariant, 189
optical lithography profile, 14
optical microscopy, 167
optical path difference, 67
optical pattern generators, 119
optical performance, 167, 174
optical power, 60
optical transmitter subassembly, 230
optimization, 66, 79, 96
OSLO Pro, 79
overdevelopment, 140
overexposure, 140
parallel hybrid array, 231
pattern generators, 4
permeability, 52
permittivity, 52
Petzval curvature, 198
Petzval lens, 202
Petzval objective, 201
Petzval surface, 64
phase constants, 79
phase difference, 29
phase function, 69, 79
phase grating, 154
phase mask, 79
phase profile, 68, 70
phase transition, 71
phase-shifting interferometry, 130, 173–174
phasor, 9–10
photolithographic processes, 133
photolithographic techniques, 14
photoresist, 14, 119, 123, 134–136, 138–139, 144
photoresist contrast, 137–138
photoresist response, 137, 150
pixel, 89–93, 96
plane-wave expansion, 46
plane-wave spectrum, 27
plane-wave spectrum (PWS) method, 39–40
plane-wave spectrum (PWS) model, 43
plano-convex lens, 7, 77–80
plasma etching, 156
plastic injection molding, 160
polycarbonate, 160
polymethyl methacrylate, 160
positive resists, 134
postexposure bake, 139–140
power, 78
prescription, 57
prism, 11
profilometer, 168
projection lithography, 137
propagation constant, 19
propagation of light, 20
proximity printing, 137
radius of curvature, 60
rate constant C, 134
ray intercept curve, 65–66, 202, 204
Rayleigh–Sommerfeld, 21
Rayleigh–Sommerfeld (RS) equation, 17, 21, 26–27
Rayleigh–Sommerfeld propagations, 27
Rayleigh–Sommerfeld diffraction integral, 39
reactive, 142
reactive etching, 142
reactive ion beam etching, 143
reactive ion etching, 142, 151, 156
rect function, 24–26, 28, 30, 84–85
reflow, 214
reflow method, 155–156
refractive doublet, 201
refractive index, 60
refractive index curve, 138
refractive lens, 193
refractive micro-optics, 154, 156, 169, 231
refractive microlens, 155–156, 170
replication, 149, 159–160
response curve, 137
rigorous coupled wave analysis (RCWA), 44–46
rotating slit scanner (RSS), 178
sag, 68
samplers, 220
scalar (thin-phase) approximation, 38
scalar analysis, 34
scalar diffraction theory, 17
scalar theory, 37, 44, 49
scalar thin-phase approximation, 37
scanning electron microscope (SEM), 124, 171–173
scanning lenses, 195
scatterometer, 175–176
Seidel aberrations, 63, 195
Seidel coefficient, 188, 190–192, 194
self-assembled monolayer, 161
sensors, 216
shadow, 199
shadowing, 32, 73
shim, 159–161
simulated annealing, 100–102, 104–106, 108, 110
simulated annealing algorithms, 104
single-point diamond turning (SPDT), 157–158
soft lithography, 161–162
softbake, 136
sol-gel materials, 160
space-bandwidth product (SBWP), 89–90
specifications, 57–58, 78
spherical, 66, 187, 194
spherical aberration, 65, 78, 81, 188, 191–192, 194–195, 201, 203
spin coating, 135–136
splitters, 220
spot array generator, 173, 177, 181, 221–222, 228
square-wave grating, 29–31, 49–50, 115
square-wave phase grating, 31
staircase lens, 199–200
step-and-repeat projection lithography systems, 137
stepper, 137
stochastic algorithms, 100
stochastic optimization, 111
stop shift equations, 191, 193–194
substrate, 125, 129
substrate quality, 131
substrate testing, 130
subwavelength, 54–55
subwavelength antireflection structures, 154
subwavelength diffraction gratings lenses, 228
subwavelength diffractive lens, 229
subwavelength diffractive profiles, 55
subwavelength grating, 54–55, 225
subwavelength lens, 228
subwavelength optics, 226
subwavelength period, 54–55
subwavelength profile, 226, 228
subwavelength structure, 5, 226–228
subwavelength technology, 55
subzones, 9
<table>
<thead>
<tr>
<th>Term</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>super-Gaussian</td>
<td>219</td>
</tr>
<tr>
<td>superzone</td>
<td>70, 187, 197–198</td>
</tr>
<tr>
<td>superzone lenses</td>
<td>197</td>
</tr>
<tr>
<td>surface profile</td>
<td>70</td>
</tr>
<tr>
<td>surface relief profiles</td>
<td>115</td>
</tr>
<tr>
<td>Sweatt model</td>
<td>189–190, 200, 205</td>
</tr>
<tr>
<td>Talbot array illuminator</td>
<td>222–224</td>
</tr>
<tr>
<td>Talbot distance</td>
<td>223–224</td>
</tr>
<tr>
<td>Talbot effect</td>
<td>222</td>
</tr>
<tr>
<td>telecentric</td>
<td>198</td>
</tr>
<tr>
<td>telecentric design</td>
<td>194</td>
</tr>
<tr>
<td>telecommunications (telecom) applications</td>
<td>231</td>
</tr>
<tr>
<td>testing</td>
<td>167</td>
</tr>
<tr>
<td>thermal compensation</td>
<td>206</td>
</tr>
<tr>
<td>thermal effects</td>
<td>207</td>
</tr>
<tr>
<td>thermal embossing</td>
<td>160</td>
</tr>
<tr>
<td>thermal expansion coefficient</td>
<td>125</td>
</tr>
<tr>
<td>thermal variation</td>
<td>206</td>
</tr>
<tr>
<td>thin</td>
<td>124</td>
</tr>
<tr>
<td>thin film</td>
<td>123–124</td>
</tr>
<tr>
<td>thin-film coatings</td>
<td>123</td>
</tr>
<tr>
<td>thin-film deposition</td>
<td>144</td>
</tr>
<tr>
<td>thin-phase approximation</td>
<td>117</td>
</tr>
<tr>
<td>third-order aberrations</td>
<td>63, 187–188</td>
</tr>
<tr>
<td>top hat shape</td>
<td>218</td>
</tr>
<tr>
<td>transition points</td>
<td>70</td>
</tr>
<tr>
<td>transmission mask</td>
<td>155</td>
</tr>
<tr>
<td>transmitted wavefront errors</td>
<td>130</td>
</tr>
<tr>
<td>transverse spherical aberration (TSA)</td>
<td>64</td>
</tr>
<tr>
<td>trapezoid-based encoding</td>
<td>91</td>
</tr>
<tr>
<td>two-dimensional binary structure</td>
<td>227</td>
</tr>
<tr>
<td>unidirectional algorithm</td>
<td>96, 100</td>
</tr>
<tr>
<td>unit cell</td>
<td>87, 89–90, 92, 101</td>
</tr>
<tr>
<td>UV embossing</td>
<td>160</td>
</tr>
<tr>
<td>V-number</td>
<td>61, 76, 209–210</td>
</tr>
<tr>
<td>vector theory</td>
<td>34</td>
</tr>
<tr>
<td>vertical-cavity surface-emitting lasers</td>
<td>(VCSELs), 214, 232</td>
</tr>
<tr>
<td>video caliper</td>
<td>168</td>
</tr>
<tr>
<td>wave number</td>
<td>46</td>
</tr>
<tr>
<td>wave plates</td>
<td>227</td>
</tr>
<tr>
<td>wavefront</td>
<td>2, 13</td>
</tr>
<tr>
<td>wavefront aberration polynomial</td>
<td>192</td>
</tr>
<tr>
<td>wavefront corrector</td>
<td>3</td>
</tr>
<tr>
<td>wavefront mapping</td>
<td>83</td>
</tr>
<tr>
<td>wavefront sensor</td>
<td>216–217</td>
</tr>
<tr>
<td>wavefront splitting</td>
<td>83</td>
</tr>
<tr>
<td>wavefront transforms</td>
<td>6</td>
</tr>
<tr>
<td>waveguide couplers</td>
<td>154</td>
</tr>
<tr>
<td>wavelength</td>
<td>71–72</td>
</tr>
<tr>
<td>wavelength division multiplexing</td>
<td>154</td>
</tr>
<tr>
<td>wet etching</td>
<td>141</td>
</tr>
<tr>
<td>Young’s double-slit</td>
<td>25</td>
</tr>
<tr>
<td>ZEMAX</td>
<td>79</td>
</tr>
<tr>
<td>zones</td>
<td>9</td>
</tr>
</tbody>
</table>
Donald C. O'Shea received a Bachelor of Physics from the University of Akron, a Master of Science in Physics from Ohio State University, and a Ph.D. in Physics from Johns Hopkins University. Following his work at Hopkins, he was a postdoctoral fellow at the Gordon McKay Laboratory at Harvard University. In 1970, he joined the faculty of the School of Physics at Georgia Institute of Technology, where he is now Professor of Physics. He has been a Visiting Scholar at the Optical Sciences Center of the University of Arizona and at the University of Oulu, Finland.

Dr. O’Shea has co-authored an undergraduate textbook, *An Introduction to Lasers and Their Applications*, and authored an undergraduate textbook, *Elements of Modern Optical Design*. He created the Optics Discovery Kit for the Optical Society of America for use in precollege education. He was awarded the Esther Hoffman Beller Award by the Optical Society of America for “excellence in the field of optics education.” He is the co-inventor of a display system for low-vision patients and has published more than 50 scientific publications and presented a similar number at national and international scientific meetings. Dr. O’Shea is a Fellow of the SPIE and the Optical Society of America. He was SPIE President during 2000. He is currently the editor of *Optical Engineering*, SPIE’s flagship journal.

Thomas J. Suleski has been actively involved in research and development of optical microsystems and microfabrication techniques for over eleven years at places such as the Georgia Institute of Technology and Digital Optics Corporation. Dr. Suleski has multiple patents and numerous technical publications on the design, fabrication, and testing of micro-optical components and systems, covering topics that include rapid, low-cost fabrication techniques for micro-optics, near-field diffraction properties of periodic structures, diffractive optic design, grayscale microlithography, near-field holography, micoreplication, and integration of optical microsystems. He has been an invited speaker at several micro-optics conferences. Dr. Suleski has served as Associate Editor (Microfabrication) for the *Journal of Microlithography, Microfabrication, and Microsystems*, and has chaired multiple conferences on micro-optics technology. He is also an instructor for short courses on microfabrication technologies for micro-optics.

Alan Kathman has pursued a fascination with optics since high school. He earned a Bachelor's Degree in Physics at Purdue University and a Master's Degree in Physics at the University of Alabama at Huntsville. From 1985 to 1995, Mr. Kathman was employed by Teledyne Brown Engineering, where, in 1994, he was named “Scientist of the Year”. He is currently with Digital Optics Corporation and lives in Charlotte, North Carolina.

Mr. Kathman has authored or co-authored over 40 technical papers. He is an inventor with over 30 US patents and several foreign patents. Alan has designed and developed optical products for a number of applications. His professional interests include diffractive optics, micro-optics, interferometry and coherence, as well as lean development and product management. Mr. Kathman also enjoys explaining optical phenomena to his very tolerant wife and sons: Lesli, Brandon and Matthew.
Dennis W. Prather received the B.S.E.E., M.S.E.E., and Ph.D. from the University of Maryland in 1989, 1993, and 1997, respectively. During this time he worked as a senior research engineer for the Army Research Laboratory in the Optics Branch, where his efforts included work on the modeling, design, and fabrication of diffractive optical elements in both the scalar and vector regime, and their integration with active opto-electronic devices such as infrared focal plane arrays and VCSELs and began to develop the application of numerical electromagnetic models to the analysis of aperiodic-subwavelength and nanoscale-photonic devices. In 1997 he joined the faculty at the University of Delaware, where he is currently an Associate Professor in the Department of Electrical and Computer Engineering. There, he leads the Laboratory for Nano- and Integrated-Photonic Systems where the focus is on both the theoretical and experimental aspects of active and passive nanophotonic elements and their integration into optoelectronic subsystems.