Bibliography

Bibliography (cont’d)

Index

absorption, 1, 3
adaptive optics systems, 46
aerosol scattering, 3
Airy disk, 48–49, 84
amplitude, 16
amplitude change, 18, 22, 61, 81
angle-of-arrival, 32
angle-of-arrival jitter, 55
angle-of-arrival tilt, 55
angular anisoplanatism, 51
angular frequency, 15
anisoplanatism, 46
anisotropic, 13
aperture averaging, 35, 83
aperture filter functions, 54
aperture-averaging factor, 43, 44
astigmatism, 52, 53
atmospheric coherence length, 46
atmospheric coherence width, 31
atmospheric MTF, 48
beam broadening, 1
beam displacement, 27
beam radius, 18, 81
beam scintillation, 22
beam spot size, 26
beam spreading, 22, 26
beam steering, 22, 27
beam waist, 17, 18
beam wander, 22, 27
Beer’s law, 4
bistatic channel, 75, 79, 80
bistatic system, 70
bit error rate BER, 35, 60, 84
blue sky, 5
blur circle, 49
carrier, 56
classical turbulence, 7
coherent detection system, 61, 84
coherent Doppler lidar, 70
collimated beam, 17
collimated Gaussian-beam wave, 30
coma, 52
communication system, 56
complex amplitude, 15
complex filter functions, 54
complex phase of a spherical wave, 24
complex phase perturbations, 23
convergent beam, 17
corona, 5
correlation width, 35, 41, 69
covariance function, 36, 41, 82
critical Reynolds number, 7
defocus, 53
demodulation, 56
detection probability, 58
diffraction, 18, 81
diffuse target, 72
digital transmission, 60
direct detection system, 22, 57, 59, 84
displacement, 27
dissipation (heat), 7
dissipation range, 7
divergence angle, 17
divergent beam, 17
Doppler frequency shift, 71
downlink beam radius, 65
downlink path, 38
downlink plane wave, 68, 69
downlink scintillation, 67
duty cycle, 71
dynamic mixing, 7
echo beam, 72
echo wave, 76
effective spot radius, 19, 20
energy cascade theory, 7
enhanced backscatter EBS, 73, 74, 85
envelope detector, 62
exosphere, 2
expected number of fades, 63, 64, 85
Extended Huygens-Fresnel Principle, 24, 81
extended target, 72
extinction coefficient, 4
fade probability, 60
false alarm, 58
false alarm probability, 58
field, 15
focus, 52, 53
focusing, 18, 81
Fourier coefficients, 52, 54
fourth-order coherence function, 36
free-space SNR, 59
frequency modulation, 61
Fried's atmospheric coherence length, 47, 83
Fried's parameter, 31, 47
gamma-gamma model, 64
Gaussian-beam wave, 14, 17, 18, 81
glory, 1, 5
green flash, 5
green ray, 5
Greenwood time constant, 47, 83
guide star, 51
halo, 5
Helmholtz equation, 15
heterodyne detection systems, 22, 62
higher-order Gaussian-beam modes, 14
higher-order
Hermite-Gaussian mode, 19
higher-order
Laguerre-Gaussian mode, 20
homodyne detection systems, 22, 24, 25, 31
Hufnagle-Valley Model, 12
image blur, 50
image dancing, 22, 32
image jitter, 32, 50
incident Gaussian-beam wave, 74, 78, 86
incident spherical wave, 73, 75, 79, 80, 85
incoherent detection system, 57
incoherent imaging system, 48
index of refraction, 10
inertial range, 7
inertial subrange, 10
inertial-convective range, 9
inner scale of turbulence, 7–9, 11
intensity, 19, 20
intensity modulation, 57
ionosphere, 2
irradiance covariance function, 35
irradiance fluctuation conditions, 38–41
irradiance fluctuations, 1, 22, 29, 74–75, 77
irradiance flux variance, 43, 44, 83
irradiance, 19, 20
irradiance in free space, 26
isotropy, 6, 8, 10
isoplanatic angle, 51, 83
Kolmogorov spectrum, 10, 13
Kolmogorov turbulence theory, 7
laminar flow, 7
large-scale turbulence, 27
laser radar system, 70
Index

lasercom systems, 56
lidar systems, 70
location, 18
log-amplitude structure function, 28
log-amplitude variance, 35
log-irradiance variance, 35
lognormal model, 63
long-exposure resolution, 46, 50, 84
longitudinal phase shift, 18
long-time-average, 26, 81
loss of spatial coherence, 1, 22
lowpass filter, 57

Maréchal approximation, 50
maximum unambiguous range, 71
maximum unambiguous velocity, 71
mean carrier-to-noise ratio, 61
mean fade time, 63, 64, 85
mean field, 23-25
mean irradiance in turbulence, 26
mean irradiance profile, 26, 65
mean SNR, 59, 62
mean-square phase error, 54
mesopause, 2
mesosphere, 2
Mie scattering, 3
missed detection, 58
modal expansion, 54
modified atmospheric spectrum, 13
modulation transfer function, 46, 48, 83
modulation, 56
modulus of the complex degree of coherence, 30
monostatic channel, 75, 79, 80
monostatic system, 70
MTF of imaging system in free space, 48
mutual coherence function, 22–25, 28–30, 81
noise source, 57, 61
normalized covariance function, 43, 44

on-off keying binary detection system OOK, 60
optical depth, 4
optical remote sensing, 70
optical transfer function OTF, 48
optical turbulence, 10
outer scale of turbulence, 7
outer scale, 8, 38–40

Parabolic Equation Method, 25
paraxial approximation, 15
paraxial wave equation, 15
phase, 16
phase fluctuations, 22, 31, 50
phase front radius of curvature, 17, 18
phase modulation, 61
phase structure function, 28, 31
phase variance, piston and tilt removed, 55
phase variance, piston removed, 55
photo-detector, 57
photon-noise limited performance, 59
piston, 52, 53
plane wave, 14, 16, 31
plane wave coherence radius, 28, 81
plane wave limit, 77, 78
point spread function, 48, 83
point target, 75

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 07 Mar 2020
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use
Index

point-ahead angle, 51
potential temperature, 9
power spectral density, 10, 81
power spectrum, 8, 9, 13, 35
power-detecting system, 57
probability of error, 60
probability of fade, 63–64, 85
pulse repetition frequency
PRF, 71
pulse repetition interval PRI, 71
radar, 71
radius of curvature, 18, 81
range equation, 71
Rayleigh criterion, 49, 84
Rayleigh law, 3
Rayleigh resolution, 49, 84
Rayleigh scattering, 3
receiver plane loss of spatial coherence, 72
receiver plane scintillation, 72
red sunset, 5
reduced wave equation, 15
refractive-index fluctuations, 1
refractive-index inner scale, 10
refractive-index structure function, 10, 81
resolved target, 72
resolving power, 50
retroreflector, 75
Reynolds number, 7
rms displacement, 27, 81
rms image displacement, 32
rms noise power, 59
rms signal power, 59
rms wave front error, 52
rms wind speed, 12
Rytov approximation, 38, 39, 41
Rytov method, 23, 36, 81
Rytov variance, 37–39
scattering, 1, 3
scattering disk, 41
scintillation, 35, 37
scintillation index, 35–40, 68, 76–80, 82, 86
scintillometer, 11
second moment of the irradiance, 36
seeing angle, 47
signal fades, 35
signal, 58
signal-to-noise ratio SNR, 59–60
slant paths, 11
SLC Day Model, 12
SLC Night Model, 12
slew rate, 12
smooth target, 75
sparrow resolution, 49, 84
spatial coherence, 28
spatial covariance function, 42
spatial coherence radius, 30, 47, 75
spatial resolution, 49
specular target, 72
spherical wave, 14, 16
spherical wave coherence radius, 29
spherical wave limit, 77, 78
spot radius, 18
spot size radius, 17
square-law detector, 62
statistical homogeneity, 6, 8, 10
stochastic Helmholtz equation, 23
stratopause, 2
stratosphere, 2
Strehl ratio, 50, 84
strong fluctuations, 38–41, 43, 44
strong irradiance fluctuations, 76, 80
strong turbulence, 11
structure constant, 8, 9
structure parameter, 8, 11

target classifications, 72
target return beam spread, 72
Tatarskii spectrum, 13
Taylor’s frozen turbulence hypothesis, 35, 42
temperature structure function, 9
temporal characteristics, 47
temporal coherence, 28
temporal covariance function, 35
temporal spectrum, 42
temporal spectrum of irradiance fluctuations, 42
thermosphere, 2
threshold detection, 58
tilt, 52
tilt jitter variance, 55
tilt phase variance, 55
time constant, 27
transmittance, 4
tropopause, 2
troposphere, 2
turbulence, 6
turbulent eddies, 7
turbulent flow, 7
two-dimensional Fourier series, 52

unresolved target, 72
unresolved target, 74
uplink beam radius, 65
uplink path, 39
uplink scintillation, 66
uplink spherical wave, 68

variance of the angle-of-arrival, 32
velocity fluctuations, 7
velocity structure function, 8
vertical, 11
vertical path, 12
visibility, 4
visual range, 4
Von Kármán spectrum, 13

wave equation, 15
wave number, 15
wave structure function, 28–30
wavefront tilt, 53
weak fluctuations, 38–41, 43
weak irradiance fluctuations, 23, 30
weak turbulence, 11

Zernike polynomials, 52, 53
Larry C. Andrews is a Professor of mathematics at the University of Central Florida and an associate member of the College of Optics/CREOL. He is also an associate member of the Florida Space Institute (FSI). Previously, he held a faculty position at Tri-State University and was a staff mathematician with the Magnavox Company, antisubmarine warfare (ASW) operation. He received a doctoral degree in theoretical mechanics in 1970 from Michigan State University. Dr. Andrews has been an active researcher in optical wave propagation through random media for more than 20 years and is the author or co-author of 10 textbooks on differential equations, boundary value problems, special functions, integral transforms, and wave propagation through random media. Along with wave propagation through random media, his research interests include special functions, random variables, atmospheric turbulence, and signal processing.