EUV Sources for Lithography
EUV Sources
for Lithography

Vivek Bakshi
I dedicate this book to my parents, wife, and daughter
Contents

Preface
Vivek Bakshi

Introduction
Kevin Kemp

List of Contributors

List of Abbreviations

Section I: Introduction and Technology Review

Chapter 1 EUV Source Technology: Challenges and Status
Vivek Bakshi

1.1 Introduction
1.2 Conversion Efficiency of EUV Sources
1.3 EUV Source Power
1.4 Source Components and Their Lifetimes
1.5 Summary and Future Outlook
References

Chapter 2 EUV Source Requirements for EUV Lithography
Kazuya Ota, Yutaka Watanabe, Vadim Banine, and Hans Franken

2.1 Introduction and Background
2.2 Source Requirements
2.3 Component Degradation
2.4 Cost of Ownership
2.5 Conclusions
Acknowledgments
References

Section II: Fundamentals and Modeling

Chapter 3 Atomic Xenon Data
John D. Gillaspy

3.1 Introduction

*Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 20 Apr 2020
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use*
3.2 Specification of the Subtypes of Fundamental Atomic Data Needed 49
3.3 Overview and Current Status of Available Data for Xenon ($q = 7$ to $q = 18$) 53
3.4 References to Data for the Less-Critical Charge States ($q < 7$ or $q > 18$) of Xenon 54
3.5 Benchmarking Input Data 54
3.6 Benchmarking Output Data 55
3.7 Outlook and Future Data Needs 56
Acknowledgments 57
References (for main text) 57
Appendix A: International SEMATECH's Fundamental Data Working Group 59
Appendix B: Xenon Atomic Data 59

Chapter 4 Atomic Tin Data 113
4.1 Introduction 113
4.2 Theoretical Approach 114
4.3 Results of the Calculations 115
4.4 Registration of Sn Plasma Spectra 115
4.5 Primary Classification on Charge States 117
4.6 Conclusion 120
Acknowledgments 120
Appendix: Results of Theoretical Calculations of Sn Ion Spectra 121
References 147

Chapter 5 Atomic Physics of Highly Charged Ions and the Case for Sn as a Source Material 149
Gerry O’Sullivan, Anthony Cummings, Padraig Dunne, Patrick Hayden, Luke McKinney, Nicola Murphy, and John White
5.1 Introduction and Background 149
5.2 The Case for Xenon 151
5.3 Alternatives to Xenon; the Case for Tin 156
5.4 Conclusions 167
Acknowledgments 167
References 168

Chapter 6 Radiative Collapse in Z Pinches 175
6.1 Introduction 175
6.2 Formation of Pinch Columns 176
6.3 Discharge Source for EUVL: High-Power, High-CE Alternative Concept Source 178
6.4 Neck Instabilities in Pinch Plasmas: Radiative Collapse 179
6.5 Plasma-Column Energy Balance; Pease-Braginskii Current; Critical Current for Heavy-Ion Plasmas 180
6.6 Neck Development Scenario 183
6.7 Experimental Observation of Neck Instabilities; Plasma Outflow 185
6.8 Dissipation of Electrical Energy in the Discharge 186
6.9 Equilibrium Radius; EUV Source Size 187
6.10 Equilibrium Radius versus Linear Density Trajectory 189
6.11 Stability of Radiative-Collapse Trajectory, EUV Yield, and Shot-to-Shot Reproducibility 190
6.12 Axial Size of the EUV Source; Zippering Effect 191
6.13 Conclusions 193
Acknowledgments 193
References 193

Chapter 7 Fundamentals and Limits of Plasma-based EUV Sources 197
Rainer Lebert, Thomas Krücken, and H.-J. Kunze
7.1 Introduction 197
7.2 Required Parameters of EUV Sources 199
7.3 Fundamental Limits 201
7.4 Fundamental Processes 205
7.5 Factors Influencing the Radiative Yield 208
7.6 Plasma Simulation: Tool for Source Optimization 215
7.7 Atomic Physics, Radiation, and Ionization Modeling 216
7.8 MHD Description of the Pinch Phase of the Discharge 218
7.9 Other Important Issues 219
Acknowledgments 219
References 219

Chapter 8 Z* Code for DPP and LPP Source Modeling 223
Sergey V. Zakharov, Vladimir G. Novikov, and Peter Choi
8.1 Introduction 224
8.2 Fundamentals of the Physics of EUV-Emitting Plasmas 225
8.3 Computational RMHD Code Z* 236
8.4 EUV Radiation Source Simulations 246
8.5 Summary 264
Acknowledgments 267
Appendix A: Analytical Solution for the Axially Inhomogenous Capillary Discharge 267
Appendix B: Estimations for the Motion Dynamics of a Sheath in the Ionized Gas via the Snowplow Model 269
Appendix C: Calculation of the Laser Energy Transport Process 271
References 271

Chapter 9 HEIGHTS-EUV Package for DPP Source Modeling 277
A. Hassanein, V. Morozov, V. Sizyuk, V. Tolkach, and B. Rice

9.1 Introduction 277
9.2 Magnetohydrodynamics 279
9.3 External Electric Circuit 281
9.4 Detailed Radiation Transport 282
9.5 Atomic Physics and Opacities 286
9.6 Results and Discussion 294
9.7 Conclusion 296
Acknowledgments 296
References 296

Chapter 10 Modeling LPP Sources 299
Moza Al-Rabban, Martin Richardson, Howard Scott, Franck Gilleron, Michel Poirier, and Thomas Blenski

10.1 Introduction 300
10.2 EUVL Source Requirements 301
10.3 Physical Processes in Laser Plasmas 303
10.4 Modeling Laser-Target Interactions and Plasma Expansion 306
10.5 Atomic Physics Modeling of Laser Plasmas 312
10.6 Future Trends 329
Acknowledgments 330
References 330

Chapter 11 Conversion Efficiency of LPP Sources 339
Katsunobu Nishihara, Akira Sasaki, Atsushi Sunahara, and Takeshi Nishikawa

11.1 Introduction 339
11.2 Design Window for Practical Use 341
11.3 Power Balance Model 343
11.4 Atomic Models and Radiation Hydrodynamic Code 348
11.5 Conversion Efficiency for Tin and Xenon 353
11.6 Discussion and Summary 364
Acknowledgments 365
References 365

Section III: Plasma Pinch Sources 371

Chapter 12 Dense Plasma Focus Source 373
12.1 Introduction 373
12.2 Overview of the Source 374
12.3 Pulsed-Power Development 375
12.4 EUV Output Energy and Conversion Efficiency 376
12.5 Operation at High Repetition Rates 376
12.6 Thermal Management 378
12.7 EUV Source Size and Spatial and Angular Distribution 380
12.8 EUV Spectra 380
12.9 Spectral and Plasma Modeling 382
12.10 Metal Target Elements 383
12.11 Debris Mitigation and Contamination Studies 385
12.12 EUV Collector 386
12.13 Lifetime Limitations and Power Scaling 387
12.14 Summary and Conclusion 388
Acknowledgments 389
References 389

Chapter 13 Hollow-Cathode-Triggered Plasma Pinch Discharge 395
Joseph Pankert, Klaus Bergmann, Rolf Wester, Jürgen Klein, Willi Neff, Oliver Rosier, Stefan Seiwert, Christopher Smith, Sven Probst, Dominik Vaudrevange, Guido Siemons, Rolf Apetz, Jeroen Jonkers, Michael Loeken, Günther Derra, Thomas Krücken, and Peter Zink
13.1 Introduction 395
13.2 Physics of EUV Sources based on Hollow-Cathode-Triggered Gas Discharges 396
13.3 The Philips HCT Source: Design and Results 401
13.4 Summary and Outlook 410
Acknowledgments 410
References 410

Chapter 14 High-Power GDPP Z-Pinch EUV Source Technology 413
Uwe Stamm, Guido Schriever, and Jürgen Kleinschmidt
14.1 Introduction 413
14.2 Physics of the Z-Pinch Discharge and EUV Generation 418
14.3 Emitter Materials for 13.5-nm Z-Pinch Sources 421
14.4 Discharge Electrode System, Source Collector, and Electrode Lifetime 423
14.5 Pulsed Power Excitation of Z Pinches 427
14.6 Discharge-Electrode Thermal Management Technology 431
14.7 Debris Mitigation and Collector-Optics Protection 433
14.8 First Commercial Sources for Exposure Tools—EUV Source XTS 13-35 435
14.9 Scaling of Z-Pinch Power and Lifetime Performance to β-Tool and HVM Requirements 439
14.10 Path to Meet Remaining Challenges for HVM GDPP Sources—Lifetime Improvement of Discharge Electrode System and Source Collector Optics for Tin Fuel 445
14.11 Summary and Conclusion 448
Acknowledgments 448
References 449

Chapter 15 Star Pinch EUV Source 453
Malcolm W. McGeoch

15.1 Generic EUV Source Factors 453
15.2 Directed Discharges 459
15.3 Current Star Pinch Performance 465
15.4 Scaling to High-Volume Manufacturing 471
References 473

Chapter 16 Xenon and Tin Pinch Discharge Sources 477

16.1 Introduction 477
16.2 Pinch Effect 478
16.3 EUV Source Using Xe 481
16.4 Some Approaches to Meet HVM Requirements 488
16.5 Pinch Discharges Based on Sn Vapor and Gas Mixtures 491
16.6 Excimer-Laser-Initiated Pinch Discharge in Sn 495
16.7 Conclusions 500
Acknowledgments 501
References 501

Chapter 17 Capillary Z-Pinch Source 505
Yusuke Teramoto, Hiroto Sato, and Masaki Yoshioka

17.1 Introduction 505
17.2 Discharge Head and Magnetic Pulse Compression Generator 506
17.3 Diagnostics 507
17.4 Experimental Results 509
17.5 Conclusions 520
Acknowledgments 521
References 521

Chapter 18 Plasma Capillary Source 523
Željko Andreić, Samir Ellwi, and H.-J. Kunze

18.1 Introduction 523
18.2 Theoretical Modeling 524
18.3 Gas-Filled Capillaries 524
18.4 Ablative Capillary Discharges 526
18.5 Different Additives 531
18.6 Conclusion 532
Acknowledgments 532
References 533

Section IV: Laser-Produced Plasma (LPP) Sources 535

Chapter 19 Technology for LPP Sources 537
Uwe Stamm and Kai Gäbel

19.1 Introduction 537
19.2 Physics of LPP-based EUV Generation 541
19.3 Laser Target Modifications and Target Handling 544
19.4 Laser-Driver Technology for LPP EUV Sources 546
19.5 CE and Output Power—Experimental Data 551
19.6 Etendue, Source Size, and Source Collector 553
19.7 Scaling of Performance to HVM 556
19.8 Summary and Conclusion 558
Acknowledgments 558
References 559

Chapter 20 Spatially and Temporally Multiplexed Laser Modules for LPP Sources 563
Samir Ellwi, Andrew J. Comley, and Michael Brownell

20.1 Introduction 563
20.2 Laser Technology 564
20.3 Target Design and Vacuum Environment 571
20.4 Conclusion 574
Acknowledgments 575
References 575

Chapter 21 Modular LPP Source 577
Martin Schmidt, Benoit Barthod, Tibério Ceccotti, Guy Cheymol, Jean-François Hergott, Olivier Sublemontier, Pierre-Yves Thro, Philippe Cormont, Jacky Skrzypczak, and Thierry Auguste

21.1 Introduction 577
21.2 Designing a Modular LPP Source 578
21.3 The ELSAC LPP Source Developed by Exulite 594
21.4 Conclusion 601
Acknowledgments 601
References 602
Chapter 22 Driver Laser, Xenon Target, and System Development for LPP Sources 607
Akira Endo

22.1 Introduction 607
22.2 High-Power Driver Laser 608
22.3 Xenon Targets 610
22.4 Light-Source EUV Characteristics 611
22.5 Summary 615
Acknowledgment 615
References 616

Chapter 23 Liquid-Xenon-Jet LPP Source 619
Björn A. M. Hansson and Hans M. Hertz

23.1 Introduction 620
23.2 Liquid-Xenon-Jet Laser Plasma Generation 624
23.3 Source Requirements and Design Example 629
23.4 Source Characterization 630
23.5 Lifetime 636
23.6 Summary 640
Acknowledgments 641
References 641

Chapter 24 LPP Source Development and Operation in the Engineering Test Stand 649
John E. M. Goldsmith, Glenn D. Kubiak, and William P. Ballard

24.1 Introduction 649
24.2 Early Source Development at Sandia 651
24.3 ETS Source Development 653
24.4 Integration of the High-Power Source into the ETS 657
24.5 ETS Operation with the High-Power Source 661
24.6 Conclusion 663
Acknowledgments 665
References 665

Chapter 25 Xenon Target and High-Power Laser Module Development for LPP Sources 669

25.1 Introduction 669
25.2 Laser Module 669
25.3 Xenon Target Development 674
Chapter 26 Laser Plasma EUV Sources based on Droplet Target Technology 687

Martin Richardson, Chiew-Seng Koay, Kazutoshi Takenoshita, Christian Keyser, Simi George, Moza Al-Rabban, and Vivek Bakshi

26.1 Introduction 687
26.2 Laser Interaction with Mass-Limited Spherical Targets 691
26.3 Plasma Dynamics of Droplet Laser Plasmas 695
26.4 EUV Emission from Laser Plasma Droplet Sources 701
26.5 Ion Emission from Droplet Laser Plasmas 704
26.6 Particle Emission from Laser Plasmas 707
26.7 Inhibition of Ion and Particle Emission 710
26.8 High-Power and Long-Life Target Scenarios 713
26.9 Summary 714
Acknowledgments 714
References 715

Section V: EUV Source Metrology 719

Chapter 27 Flying Circus EUV Source Metrology and Source Development Assessment 721

Fred Bijkerk, Santi Alonso van der Westen, Caspar Bruineman, Robert Huiting, René de Bruijn, and Remko Stuik

27.1 Historical Overview of Metrology Development and Standardization 721
27.2 Metrology Concept 722
27.3 EUV Source Metrology Calibration Procedures 723
27.4 FC Source Progress Assessment 725
27.5 Diagnostic Extensions and New Developments 727
27.6 Summary and Future Directions 729
Acknowledgments 730
References 731

Chapter 28 Plasma Diagnostic Techniques 735

Eric C. Benck

28.1 Introduction 735
28.2 Surface Accumulators 736
28.3 Plasma Imaging 738
28.4 Electron Diagnostics 742
28.5 Ion Diagnostics 745
28.6 Neutral-Atom Detectors 752
<table>
<thead>
<tr>
<th>Chapter 29</th>
<th>Metrology for EUVL Sources and Tools</th>
<th>759</th>
</tr>
</thead>
<tbody>
<tr>
<td>Steve Grantham, Charles Tarrio, Robert Vest, and Thomas Lucatorto</td>
<td></td>
<td></td>
</tr>
<tr>
<td>29.1 Introduction</td>
<td>760</td>
<td></td>
</tr>
<tr>
<td>29.2 NIST EUV Sources for Metrology</td>
<td>760</td>
<td></td>
</tr>
<tr>
<td>29.3 Inband EUV Power Instrumentation</td>
<td>764</td>
<td></td>
</tr>
<tr>
<td>29.4 Reflectometry</td>
<td>765</td>
<td></td>
</tr>
<tr>
<td>29.5 Detector Characterization</td>
<td>769</td>
<td></td>
</tr>
<tr>
<td>29.6 Calibration of EUV Radiometry Tools</td>
<td>777</td>
<td></td>
</tr>
<tr>
<td>29.7 Conclusion</td>
<td>780</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter 30</th>
<th>Calibration of Detectors and Tools for EUV-Source Metrology</th>
<th>785</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frank Scholze and Gerhard Ulm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>30.1 Introduction</td>
<td>785</td>
<td></td>
</tr>
<tr>
<td>30.2 Synchrotron Radiation Beamlines for EUV Metrology</td>
<td>786</td>
<td></td>
</tr>
<tr>
<td>30.3 Instrumentation for Detector Calibration and Optics Characterization</td>
<td>792</td>
<td></td>
</tr>
<tr>
<td>30.4 Semiconductor Photodiodes as Reference Detector Standards</td>
<td>797</td>
<td></td>
</tr>
<tr>
<td>30.5 Spectrally Filtered Tools and Spectrographs</td>
<td>807</td>
<td></td>
</tr>
<tr>
<td>30.6 Conclusions and Future Needs</td>
<td>813</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter 31</th>
<th>Electron-based EUV Sources for At-Wavelength Metrology</th>
<th>823</th>
</tr>
</thead>
<tbody>
<tr>
<td>André Egbert and Boris N. Chichkov</td>
<td></td>
<td></td>
</tr>
<tr>
<td>31.1 The EUV Tube—an Old Solution for New Applications</td>
<td>823</td>
<td></td>
</tr>
<tr>
<td>31.2 Characteristics of the EUV Tube</td>
<td>825</td>
<td></td>
</tr>
<tr>
<td>31.3 Applications of the EUV Tube</td>
<td>833</td>
<td></td>
</tr>
<tr>
<td>31.4 Summary and Outlook</td>
<td>839</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter 32</th>
<th>Synchrotron Radiation Sources for EUVL Applications</th>
<th>841</th>
</tr>
</thead>
<tbody>
<tr>
<td>Obert R. Wood, II and Alastair A. MacDowell</td>
<td></td>
<td></td>
</tr>
<tr>
<td>32.1 Electron Storage Rings and Synchrotron Radiation</td>
<td>841</td>
<td></td>
</tr>
<tr>
<td>32.2 Characteristics of Synchrotron Radiation</td>
<td>845</td>
<td></td>
</tr>
</tbody>
</table>
32.3 Survey of Current Synchrotron Radiation Facilities 848
32.4 Selected Applications of Synchrotron Radiation in EUVL 849
32.5 Conclusions and Suggestions for Future Work 864
References 865

Section VII: EUV Source Components 871

Chapter 33 Grazing-Incidence EUV Collectors 873
Piotr Marczuk and Wilhelm Egle

33.1 Introduction 873
33.2 EUV Collectors: General Considerations 875
33.3 Grazing-Incidence EUV Collectors 876
33.4 Summary, Trends, and Challenges 890
Acknowledgments 890
References 891

Chapter 34 Collection Efficiency of EUV Sources 893
Günther Derra and Wolfgang Singer

34.1 Introduction 893
34.2 Etendue of Illumination Systems 894
34.3 Determination of EUV Source Power 898
34.4 Example Measurements at the HCT Pinch 904
34.5 Conclusions 910
Acknowledgments 912
References 912

Chapter 35 Electrode and Condenser Materials for Plasma Pinch Sources 915

35.1 Introduction 916
35.2 Electrode Thermal Response 917
35.3 Materials Selection for Plasma Pinch Sources 925
35.4 Testing of Materials in Plasma-Gun Facilities 932
35.5 Modeling and Testing Condenser-Optic Response 946
35.6 Conclusions 953
References 953

Chapter 36 Origin of Debris in EUV Sources and Its Mitigation 957
David N. Ruzic

36.1 Introduction 958
36.2 Source Terms 958
36.3 Standard Mitigation Techniques 969
36.4 Mitigation through Plasma-based Secondary Ionization 976
Preface

Until recently, EUV source power was the number one challenge to implementing EUV lithography (EUVL) in the high-volume manufacturing of computer chips. But due to the dedicated efforts of a few dozen research groups around the world, EUV source technology continues to advance. Today, with tremendous improvements in source power and other characteristics, source power is no longer the leading challenge. EUV sources have evolved from a laboratory concept to reality, with alpha-level EUV sources being delivered for integration in alpha-level EUV scanners.

This reference book contains 38 chapters contributed by leading researchers and suppliers in the field of EUV sources for EUVL. The chapter topics are intended to cover the needs of practitioners of the technology as well as readers who want an introduction to EUV sources. The book begins with in-depth coverage of EUV source requirements and the status of the technology, followed by a review of fundamental atomic data and descriptions of theoretical models of discharge-produced plasma (DPP) and laser-produced plasma (LPP) based EUV sources, prominent DPP and LPP designs, and alternative technologies for producing EUV radiation. Also covered are topics in EUV source metrology, EUV source components (collectors, electrodes), debris mitigation, and mechanisms of component erosion in EUV sources.

As EUV source technology has progressed, researchers and commercial suppliers around the world have published more than 100 papers per year, and the amount of technical data on EUV source technology continues to increase. My effort as volume editor has been to produce an authoritative reference book on EUV source technology, which has not existed until now. In the future one may need to consult the proceedings of SEMATECH’s EUV Source Workshops and SPIE’s Microlithography conference for the most recent performance improvements in EUV sources, but this text will still deliver the in-depth technical background information on particular technical approaches and on EUV source technology in general.

The primary strength of this book is that the contributions came from leading experts. The choice of having many authors per section has produced a comprehensive and true reference book, covering a range of technical options and opinions. I have done my best to make each chapter a complete reference in itself, though some sections—usually the introductory sections of chapters—inevitably overlap. For example, although each chapter mentions the requirements for a source, the
reader is encouraged to consult Chapter 2 to understand the details of EUV source requirements. Likewise, many authors refer to certain issues such as debris generation in their chapters; however, the reader is directed to Chapter 37 for a comprehensive reading on the fundamentals of debris generation and mitigation.

This project has been successful due to the dedication and hard work of many technologists worldwide. Therefore, I would like to acknowledge and thank the authors who have worked very hard to produce a reference chapter on their technical work. Their quality manuscripts made my job as an editor much easier. This book is essentially the fruit of their labor.

I would like to thank my colleagues at SEMATECH’s member companies, as well as the authors in this volume who took the time to review the chapters by their colleagues. I would especially like to thank some of the referees who reviewed multiple chapters: Vadim Banine, Vladimir Borisov, Peter Choi, Akira Endo, Igor Fomenkov, Samir Ellwi, Björn Hansson, Ahmed Hassanein, Lennie Klebanoff, Konstantin Koshelev, Thomas Krücken, Hans J. Kunze, Rainer Lebert, Malcolm McGeoch, Katsunobu Nishihara, Gerry O’Sullivan, Joseph Pankert, Martin Richardson, David Ruzic, Uwe Stamm, Yusuke Teramoto, and Sergey Zakharov.

I would also like to acknowledge the contributions of my family, whose influence, encouragement, and support have allowed me to undertake such a project. First of all, my father, Mr. Om Prakash Bakshi, MA, set a very high standard for written communication and the pursuit of excellence, which still today I can only strive to meet. My mother, Mrs. Pushpa Bakshi, MA, retired lecturer of the Punjabi language, always set the example of hard work and taught me a pragmatic approach toward solving everyday problems, which still guides me. My wife, Laura Coyle, encouraged me to undertake this intellectual pursuit and has always been an example of innovation and uncompromising attention to quality and detail for achieving perfection, as evident in her own achievements. Laura’s and my daughter Emily’s encouragement have allowed me to continue and complete this project. For these reasons, I have dedicated this book to my parents and my wife and daughter.

I would like to thank SPIE acquisitions editor Timothy Lamkins, with whom I worked to generate the concept of this book. I would also like to thank SPIE editor Margaret Thayer, who made one of the largest book projects ever undertaken by SPIE Press a very smooth process. I very much appreciate her support and hard work for making this book project a reality.

Finally, I would like to thank my former manager, Kevin Kemp, for his guidance and support in this project, and my employer, SEMATECH, which exemplifies industry cooperation in the semiconductor community. SEMATECH has created a global platform to facilitate consensus on the direction of technology and to promote cooperative work in the pre-competitive arena of computer chip manufacturing. Hopefully, this book will set an example of how a large number of experts and competitors can cooperate to produce a reference work to benefit an entire industry.

Vivek Bakshi
December 2005
Introduction

In semiconductor manufacturing, progress is measured in terms of the industry’s continued ability to adhere to Moore’s Law, which states that the number of transistors on a chip doubles about every two years. The *International Technology Roadmap for Semiconductors* (ITRS) dictates expected performance specifications for chip manufacturing technology to ensure continued adherence to this law. Accomplishing these specifications in turn requires the development and perfection of new technologies at a pace that is unmatched by any other industry. No single company can hope to do this alone: The increasing complexity of the technical challenges and the rising cost of development call for an unprecedented level of resource and risk sharing among semiconductor manufacturers, tool and materials suppliers, and research institutions and consortia.

Among the technical challenges facing the semiconductor industry, lithography presents some of the most formidable problems, particularly the search for a next-generation lithography solution that can provide for high-volume manufacturing of computer chips at the 32 nm node and beyond. Extreme ultraviolet lithography (EUVL) is the leading candidate to succeed optical lithography at the currently used wavelength of 193 nm. However, the technical challenges of source power, source component and optics lifetime, resist performance, and mask defectivity still must be addressed to ensure the cost-effective and timely implementation of EUVL. Furthermore, the industry infrastructure in these key areas needs to be developed rapidly to support planned manufacturing at the 32 nm generation.

Source power and associated source component lifetime are among the most critical of all the EUVL challenges. The amount of available source power translates directly to the wafer throughput that can be achieved by an EUV exposure tool. Source component lifetime affects the cost of maintaining the tool, including the amount of time that a tool must be taken out of productive service for maintenance. Both these factors in turn drive the per-wafer processing cost for the technology. The past four to six years have seen a concerted effort on the part of suppliers and researchers to achieve the power levels and component lifetimes required to produce commercial EUV sources for lithographic applications. This volume celebrates the successes along this path and provides a reference for practitioners in the field and other interested readers.

SEMATECH is a consortium of the world’s leading semiconductor manufacturers, and is a powerful catalyst for accelerating the commercialization of technology
innovations into manufacturing solutions for the semiconductor industry. Its lithography division conducts targeted research projects to accelerate technology and infrastructure development to meet the lithography requirements of the ITRS. It also organizes numerous technical workshops and symposia involving technologists and decision-makers from around the world to foster global, pre-competitive cooperation and to drive consensus solutions for future semiconductor manufacturing technology. Continued progress in the development of EUVL is a prime example of SEMATECH’s efforts in this regard, and this book is a direct result of such collaboration.

Kevin Kemp
Director, Lithography Division
SEMATECH
List of Contributors

J. P. Allain
Argonne National Laboratory, USA
Moza Al-Rabban
Qatar University, Qatar
University of Central Florida, USA
Richard J. Anderson
Sandia National Laboratories, USA
Željko Andreič
University of Zagreb, Croatia
Rolf Apetz
Philips Extreme UV GmbH, Germany
Thierry Auguste
EXULITE Project
DSM/DRECAM/SPAM, CEA, France
Saša Bajt
Lawrence Livermore National Laboratory (LLNL), USA
Vivek Bakshi
SEMAPTECH, USA
William P. Ballard
Sandia National Laboratories, USA
Vadim Banine
ASML, The Netherlands
Benoit Barthod
EXULITE Project
DSM/DRECAM/SPAM, CEA, France
Eric C. Benck
National Institute of Standards and Technology, USA
Klaus Bergmann
Fraunhofer Institut für Lasertechnik, Germany
Fred Bijkerk
FOM-Institute for Plasma Physics Rijnhuizen, The Netherlands
Thomas Blenski
DSM/DRECAM/SPAM, CEA-Saclay, France
Vladimir M. Borisov
Troitsk Institute of Innovation and Fusion Research (TRINITI), Russia
Norbert R. Böwering
Cymer, Inc., USA
J. N. Brooks
Argonne National Laboratory, USA
Michael Brownell
Powerlase Ltd., UK
Caspar Bruineman
Scientec Engineering, The Netherlands
Dean A. Buchenauer
Sandia National Laboratories, USA
T. Burtseva
Argonne National Laboratory, USA
Tibério Ceccotti
EXULITE Project
DSM/DRECAM/SPAM, CEA, France

Guy Cheymol
EXULITE Project
DSM/DRECAM/SPAM, CEA, France

Boris N. Chichkov
Laser Zentrum Hannover e.V., Germany

Peter Choi
EPPRA sas, France

S. S. Churilov
Institute for Spectroscopy Russian Academy of Sciences, Russia

Andrew J. Comley
Powerlase Ltd., UK

Philippe Cormont
EXULITE Project
DSM/DRECAM/SPAM, CEA, France

Anthony Cummings
University College Dublin, Ireland

René de Bruijn
XTREME technologies, Germany

Andrey I. Demin
Troitsk Institute of Innovation and Fusion Research (TRINITI), Russia

Günther Derra
Philips GmbH Research Laboratories and Philips Extreme UV GmbH, Germany

Padraig Dunne
University College Dublin, Ireland

André Egbert
phoenix|euv Systems + Services GmbH, Germany

Wilhelm Egle
Carl Zeiss Laser Optics GmbH, Germany

Samir Ellwi
Powerlase Ltd., UK

Alexander V. Eltsov
Troitsk Institute of Innovation and Fusion Research (TRINITI), Russia

Akira Endo
EUVL System Development Association (EUVA), Japan

Igor V. Fomenkov
Cymer, Inc., USA

Steven Fornaca
Northrop Grumman Corporation, USA

Neal R. Fornaciari
Sandia National Laboratories, USA

Hans Franken
ASML, The Netherlands

Kai Gäbel
XTREME technologies, Germany

R. Gayazov
Institute for Spectroscopy Russian Academy of Sciences, Russia

Simi George
University of Central Florida, USA

John D. Gillaspy
National Institute of Standards and Technology (NIST), USA

Franck Gilleron
CEA/DIF, France

John E. M. Goldsmith
Sandia National Laboratories, USA
V. Gomozov
Institute for Spectroscopy Russian Academy of Sciences, Russia

Steve Grantham
National Institute of Standards and Technology (NIST), USA

Björn A. M. Hansson
Royal Institute of Technology, Sweden

Jeffrey Hartlove
Northrop Grumman Corporation, USA

A. Hassanein
Argonne National Laboratory, USA

Patrick Hayden
University College Dublin, Ireland

Jean-François Hergott
EXULITE Project
DSM/DRECAM/SPAM, CEA, France

Hans M. Hertz
Royal Institute of Technology, Sweden

Jerzy R. Hoffman
Cymer, Inc., USA

Robert Huiting
FOM-Institute for Plasma Physics Rijnhuizen, The Netherlands

Z. Insepov
Argonne National Laboratory, USA

Alexander S. Ivanov
Troitsk Institute of Innovation and Fusion Research (TRINITI), Russia

V. V. Ivanov
Institute for Spectroscopy Russian Academy of Sciences, Russia

Lawrence Iwaki
Northrop Grumman Corporation, USA

Jeroen Jonkers
Philips Extreme UV GmbH, Germany

Christian Keyser
Naval Research Laboratories, USA

Oleg V. Khodykin
Cymer, Inc., USA

Oleg B. Kristoforov
Troitsk Institute of Innovation and Fusion Research (TRINITI), Russia

Yuriy B. Kiryukhin
Troitsk Institute of Innovation and Fusion Research (TRINITI), Russia

Leonard E. Klebanoff
Sandia National Laboratories, USA

Jürgen Klein
Fraunhofer Institut für Lasertechnik, Germany

Jürgen Kleinschmidt
XTREME technologies, Germany

Chiew-Seng Koay
University of Central Florida, USA

V. G. Koloshnikov
Institute for Spectroscopy Russian Academy of Sciences, Russia

Hiroshi Komori
EUVL System Development Association (EUV A), Japan

I. Konkashbaev
Argonne National Laboratory, USA

E. D. Korop
Institute for Spectroscopy Russian Academy of Sciences, Russia

K. N. Koshelev
Institute for Spectroscopy Russian Academy of Sciences, Russia
<table>
<thead>
<tr>
<th>Name</th>
<th>Institution/Company</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>V. Krivtsov</td>
<td>Institute for Spectroscopy Russian Academy of Sciences, Russia</td>
<td>Russia</td>
</tr>
<tr>
<td>Thomas Krücken</td>
<td>Philips Research Laboratories, Germany</td>
<td>Germany</td>
</tr>
<tr>
<td>Glenn D. Kubiak</td>
<td>Sandia National Laboratories, USA</td>
<td>USA</td>
</tr>
<tr>
<td>H.-J. Kunze</td>
<td>Ruhr University, Germany</td>
<td>Germany</td>
</tr>
<tr>
<td>Rainer Lebert</td>
<td>AIXUV GmbH, Germany</td>
<td>Germany</td>
</tr>
<tr>
<td>Michael Loeken</td>
<td>Philips Extreme UV GmbH, Germany</td>
<td>Germany</td>
</tr>
<tr>
<td>Thomas Lucatorto</td>
<td>National Institute of Standards and Technology (NIST), USA</td>
<td>USA</td>
</tr>
<tr>
<td>Alastair A. MacDowell</td>
<td>Lawrence Berkeley National Laboratory (LBNL), USA</td>
<td>USA</td>
</tr>
<tr>
<td>Piotr Marczuk</td>
<td>Carl Zeiss Laser Optics GmbH, Germany</td>
<td>Germany</td>
</tr>
<tr>
<td>Armando Martos</td>
<td>Northrop Grumman Corporation, USA</td>
<td>USA</td>
</tr>
<tr>
<td>Fernando Martos</td>
<td>Northrop Grumman Corporation, USA</td>
<td>USA</td>
</tr>
<tr>
<td>Malcolm W. McGeoch</td>
<td>PLEX LLC, USA</td>
<td>USA</td>
</tr>
<tr>
<td>R. D. McGregor</td>
<td>Northrop Grumman Corporation, USA</td>
<td>USA</td>
</tr>
<tr>
<td>Luke McKinney</td>
<td>University College Dublin, Ireland</td>
<td>Ireland</td>
</tr>
</tbody>
</table>
Kazuya Ota
Nikon Corporation, Japan

Joseph Pankert
Philips Extreme UV GmbH, Germany

William N. Partlo
Cymer, Inc., USA

Michael Petach
Northrop Grumman Corporation, USA

Michel Poirier
DSM/DRECAM/SPAM, CEA-Saclay, France

Samuel Ponti
Northrop Grumman Corporation, USA

Joshua M. Pomeroy
National Institute of Standards and Technology (NIST), USA

Sven Probst
Fraunhofer Institut für Lasertechnik, Germany

Alexander V. Prokofiev
Troitsk Institute of Innovation and Fusion Research (TRINITI), Russia

Laura P. Ratliff
National Institute of Standards and Technology (NIST), USA

Curtis L. Rettig
Cymer, Inc., USA

B. Rice
Intel Corporation, USA

Martin Richardson
University of Central Florida, USA

Oliver Rosier
Fraunhofer Institut für Lasertechnik, Germany

David N. Ruzic
University of Illinois at Urbana-Champaign, USA

A. N. Ryabtsev
Institute for Spectroscopy Russian Academy of Sciences, Russia

V. Safronov
Troitsk Institute for Innovation and Fusion Research (TRINITI), Russia

Akira Sasaki
Advanced Photon Research Center, Japan

Hiroto Sato
EUVL System Development Association (EUVA), Japan

Martin Schmidt
EXULITE Project DSM/DRECAM/SPAM, CEA, France

Frank Scholze
PTB, X-ray Radiometry Department, Germany

Guido Schriever
XTREME technologies, Germany

Howard Scott
Lawrence Livermore National Laboratory (LLNL), USA

Stefan Seiwerdt
Fraunhofer Institut für Lasertechnik, Germany

Harry Shields
Northrop Grumman Corporation, USA

Yu. V. Sidelnikov
Institute for Spectroscopy Russian Academy of Sciences, Russia

Guido Siemons
Philips Extreme UV GmbH, Germany
Wolfgang Singer
Carl Zeiss SMT AG, Germany

T. Sizyuk
Argonne National Laboratory, USA

V. Sizyuk
Argonne National Laboratory, USA

Jacky Skrzypczak
EXULITE Project
DSM/DRECAM/SPAM, CEA, France

Christopher Smith
Fraunhofer Institut für Lasertechnik, Germany

Uwe Stamm
XTREME technologies, Germany

Randall St. Pierre
Northrop Grumman Corporation, USA

Remko Stuik
Leiden Observatory University of Leiden, The Netherlands

Olivier Sublemontier
EXULITE Project
DSM/DRECAM/SPAM, CEA, France

Atsushi Sunahara
Institute for Laser Technology, Japan

Kazutoshi Takenoshita
University of Central Florida, USA

Charles Tarrio
National Institute of Standards and Technology (NIST), USA

Yusuke Teramoto
EUVL System Development Association (EUVA), Japan

Mark Thomas
Northrop Grumman Corporation, USA

Pierre-Yves Thro
EXULITE Project
DSM/DRECAM/SPAM, CEA, France

V. Tolkach
Argonne National Laboratory, USA

I. Yu. Tolstikhina
P. N. Lebedev Physical Institute
Russian Academy of Sciences, Russia

Gerhard Ulm
PTB, X-ray Radiometry Department, Germany

Santi Alonso van der Westen
FOM-Institute for Plasma Physics
Rijnhuizen, The Netherlands

Dominik Vaudrevange
Philips Extreme UV GmbH, Germany

Robert Vest
National Institute of Standards and Technology (NIST), USA

Armando Villarreal
Northrop Grumman Corporation, USA

Alexander Yu. Vinokhodov
Troitsk Institute of Innovation and Fusion Research (TRINITI), Russia

Vladimir A. Vodchits
Troitsk Institute of Innovation and Fusion Research (TRINITI), Russia

Yutaka Watanabe
Canon Inc., Japan

Rolf Wester
Fraunhofer Institut für Lasertechnik, Germany

John White
University College Dublin, Ireland

Obert R. Wood, II
SEMATECH, USA
<table>
<thead>
<tr>
<th>Name</th>
<th>Institution and Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>O. Yakushev</td>
<td>Institute for Spectroscopy Russian Academy of Sciences, Russia</td>
</tr>
<tr>
<td>Masaki Yoshioka</td>
<td>Ushio Inc., Japan</td>
</tr>
<tr>
<td>Sergey V. Zakharov</td>
<td>EPPRA sas, France</td>
</tr>
<tr>
<td></td>
<td>RRC Kurchatov Institute, Russia</td>
</tr>
<tr>
<td>James Zamel</td>
<td>Northrop Grumman Corporation, USA</td>
</tr>
<tr>
<td>Peter Zink</td>
<td>Philips Research Laboratories, Germany</td>
</tr>
<tr>
<td>G. G. Zukanishvili</td>
<td>Institute for Spectroscopy Russian Academy of Sciences, Russia</td>
</tr>
</tbody>
</table>
List of Abbreviations

AA average atom
ACR absolute cryogenic radiometer
ADM angular distribution monitor
AEM Auger electron microscopy
AES Auger electron spectroscopy
AFM atomic force microscopy
AIM aerial-image microscope
ALS Advanced Light Source (U.S.)
ANL Argonne National Laboratory (U.S.)
AO acousto-optical
arb. arbitrary
ASD axially symmetrical discharge
a.u. arbitrary units
BCA binary collision approximation
BW bandwidth
CBM carbon-based materials
CBS collision-based spectroscopy
CCD charge-coupled device
CE conversion efficiency
CES charged-exchange spectroscopy
CF ConFlat
CFC carbon-fiber composite
CI configuration interaction
CM collisional mixing
CO condenser optic
CoO cost of ownership
COR condenser-optic region
CR collisional radiative
CRE collisional radiative equilibrium
CRM collisional radiative mode
CTE coefficient of thermal expansion
cw continuous wave
CXRO Center for X-ray Optics (at LBNL, U.S.)
DCA direct configuration accounting
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>DCU</td>
<td>dual-crystal unit</td>
</tr>
<tr>
<td>DF</td>
<td>Dirac-Fock</td>
</tr>
<tr>
<td>DL</td>
<td>diffraction limit</td>
</tr>
<tr>
<td>DLC</td>
<td>diamondlike carbon</td>
</tr>
<tr>
<td>DMD</td>
<td>defect-mediated desorption</td>
</tr>
<tr>
<td>DPF</td>
<td>dense plasma focus</td>
</tr>
<tr>
<td>DPP</td>
<td>discharge-produced plasma</td>
</tr>
<tr>
<td>DPSS</td>
<td>diode-pumped solid state</td>
</tr>
<tr>
<td>DRT</td>
<td>discrete-ordinate method</td>
</tr>
<tr>
<td>DTA</td>
<td>detailed term accounting</td>
</tr>
<tr>
<td>DUV</td>
<td>deep ultraviolet</td>
</tr>
<tr>
<td>DWA</td>
<td>distorted-wave approximation</td>
</tr>
<tr>
<td>EBIT</td>
<td>electron-beam ion trap</td>
</tr>
<tr>
<td>EDX</td>
<td>energy dispersive x-ray spectroscopy</td>
</tr>
<tr>
<td>EM</td>
<td>electromagnetic</td>
</tr>
<tr>
<td>EO</td>
<td>electro optical</td>
</tr>
<tr>
<td>EOS</td>
<td>equation of state</td>
</tr>
<tr>
<td>ES</td>
<td>electrostatic analyzer</td>
</tr>
<tr>
<td>ESA</td>
<td>spherical-sector electrostatic energy analyzer</td>
</tr>
<tr>
<td>ESIEA</td>
<td>electrostatic ion energy analyzer</td>
</tr>
<tr>
<td>ESR</td>
<td>electrical substitution radiometer</td>
</tr>
<tr>
<td>ETS</td>
<td>Engineering Test Stand</td>
</tr>
<tr>
<td>EUV</td>
<td>extreme ultraviolet</td>
</tr>
<tr>
<td>EUVA</td>
<td>Extreme Ultraviolet Lithography System Development Association (Japan)</td>
</tr>
<tr>
<td>EUVL</td>
<td>extreme ultraviolet lithography</td>
</tr>
<tr>
<td>EUV LLC</td>
<td>EUV Limited Liability Corporation</td>
</tr>
<tr>
<td>FAC</td>
<td>Flexible Atomic Code</td>
</tr>
<tr>
<td>FC</td>
<td>Flying Circus</td>
</tr>
<tr>
<td>FDWG</td>
<td>Fundamental Data Working Group (of SEMATECH)</td>
</tr>
<tr>
<td>FFS</td>
<td>flat-field spectrograph</td>
</tr>
<tr>
<td>FMEA</td>
<td>failure-mode and effect analysis</td>
</tr>
<tr>
<td>FOM</td>
<td>Fundamenteel Onderzoek der Materie (The Netherlands)</td>
</tr>
<tr>
<td>FT</td>
<td>foil trap</td>
</tr>
<tr>
<td>FWHM</td>
<td>full width at half maximum</td>
</tr>
<tr>
<td>GA</td>
<td>Gibbsian adsorption</td>
</tr>
<tr>
<td>GDPP</td>
<td>gas-discharge produced plasma</td>
</tr>
<tr>
<td>GEA</td>
<td>gridded energy analyzer</td>
</tr>
<tr>
<td>GIM</td>
<td>grazing-incidence mirror</td>
</tr>
<tr>
<td>HCI</td>
<td>highly charged ions</td>
</tr>
<tr>
<td>HCT</td>
<td>hollow-cathode triggered</td>
</tr>
<tr>
<td>HEDP</td>
<td>high-energy-density physics</td>
</tr>
<tr>
<td>HEW</td>
<td>half energy width</td>
</tr>
<tr>
<td>HF</td>
<td>Hartree-Fock</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td>HFR</td>
<td>Hartree-Fock approximation with relativistic extensions</td>
</tr>
<tr>
<td>HFS</td>
<td>Hartree-Fock-Slater</td>
</tr>
<tr>
<td>HLI</td>
<td>Helmholtz-Lagrange invariant</td>
</tr>
<tr>
<td>HULLAC</td>
<td>Hebrew University Lawrence Livermore Atomic Code</td>
</tr>
<tr>
<td>HV</td>
<td>high voltage</td>
</tr>
<tr>
<td>HVE</td>
<td>high-voltage electrode</td>
</tr>
<tr>
<td>HVM</td>
<td>high-volume manufacturing</td>
</tr>
<tr>
<td>IBA</td>
<td>inverse bremsstrahlung absorption</td>
</tr>
<tr>
<td>IC</td>
<td>integrated circuit</td>
</tr>
<tr>
<td>ICE</td>
<td>intrinsic conversion efficiency</td>
</tr>
<tr>
<td>IDEA</td>
<td>interferometric data evaluation algorithms</td>
</tr>
<tr>
<td>IDEAL</td>
<td>Illinois Debris-Mitigation for EUV Applications Laboratory (U.S.)</td>
</tr>
<tr>
<td>IEA</td>
<td>ion energy analyzer</td>
</tr>
<tr>
<td>IEUVI</td>
<td>International EUV Initiative</td>
</tr>
<tr>
<td>IF</td>
<td>intermediate focus</td>
</tr>
<tr>
<td>IGBT</td>
<td>insulated gate bipolar transistor</td>
</tr>
<tr>
<td>IMPACT</td>
<td>Interaction of Materials with charged Particles And Components Testing</td>
</tr>
<tr>
<td>IP</td>
<td>ion probe</td>
</tr>
<tr>
<td>IR</td>
<td>infrared</td>
</tr>
<tr>
<td>IRD</td>
<td>International Radiation Detectors</td>
</tr>
<tr>
<td>ISMT</td>
<td>International SEMATECH</td>
</tr>
<tr>
<td>ITRS</td>
<td>International Technology Roadmap for Semiconductors</td>
</tr>
<tr>
<td>KIAM</td>
<td>Keldysh Institute of Applied Mathematics (Russia)</td>
</tr>
<tr>
<td>LBNL</td>
<td>Lawrence Berkeley National Laboratory (U.S.)</td>
</tr>
<tr>
<td>LEISS</td>
<td>low-energy ion scattering spectroscopy</td>
</tr>
<tr>
<td>LER</td>
<td>line edge roughness</td>
</tr>
<tr>
<td>LLNL</td>
<td>Lawrence Livermore National Laboratory (U.S.)</td>
</tr>
<tr>
<td>LPL</td>
<td>Laser Plasma Laboratory (U.S.)</td>
</tr>
<tr>
<td>LPP</td>
<td>laser-produced plasma</td>
</tr>
<tr>
<td>LTE</td>
<td>local thermodynamic equilibrium</td>
</tr>
<tr>
<td>MCDF</td>
<td>multiconfiguration Dirac-Fock</td>
</tr>
<tr>
<td>MCHF</td>
<td>multiconfiguration Hartree-Fock</td>
</tr>
<tr>
<td>MCP</td>
<td>microchannel plate</td>
</tr>
<tr>
<td>MCRT</td>
<td>Monte Carlo radiation transport</td>
</tr>
<tr>
<td>MCS</td>
<td>multicomponent system</td>
</tr>
<tr>
<td>MET</td>
<td>microexposure tool</td>
</tr>
<tr>
<td>METI</td>
<td>Ministry of Economy, Trade, and Industry (Japan)</td>
</tr>
<tr>
<td>MHD</td>
<td>magnetohydrodynamics</td>
</tr>
<tr>
<td>MHRDR</td>
<td>magnetohydronradiative-dynamic research</td>
</tr>
<tr>
<td>ML</td>
<td>multilayer</td>
</tr>
<tr>
<td>MLM</td>
<td>multilayer mirror</td>
</tr>
<tr>
<td>MO</td>
<td>master oscillator</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td>MOPA</td>
<td>master oscillator–power amplifier</td>
</tr>
<tr>
<td>MPC</td>
<td>magnetic pulse compression</td>
</tr>
<tr>
<td>MSEM</td>
<td>modified semiempirical method</td>
</tr>
<tr>
<td>Mo/Si</td>
<td>molybdenum on silicon</td>
</tr>
<tr>
<td>MTBF</td>
<td>mean time between failure</td>
</tr>
<tr>
<td>MTTR</td>
<td>mean time to repair</td>
</tr>
<tr>
<td>NA</td>
<td>numerical aperture</td>
</tr>
<tr>
<td>NEDO</td>
<td>New Energy and Industrial Technology Development Organization (Japan)</td>
</tr>
<tr>
<td>NGC</td>
<td>Northrop Grumman Corporation (U.S.)</td>
</tr>
<tr>
<td>NGL</td>
<td>next-generation lithography</td>
</tr>
<tr>
<td>NIST</td>
<td>National Institute of Standards and Technology (U.S.)</td>
</tr>
<tr>
<td>NLTE</td>
<td>non-local thermodynamic equilibrium</td>
</tr>
<tr>
<td>NSLS</td>
<td>National Synchrotron Light Source (U.S.)</td>
</tr>
<tr>
<td>OOB</td>
<td>out-of-band</td>
</tr>
<tr>
<td>ORNL</td>
<td>Oak Ridge National Laboratory (U.S.)</td>
</tr>
<tr>
<td>PBN</td>
<td>pyrolytic boron nitride</td>
</tr>
<tr>
<td>PE</td>
<td>potential energy</td>
</tr>
<tr>
<td>PMMA</td>
<td>poly(methyl methacrylate)</td>
</tr>
<tr>
<td>PO</td>
<td>projection optics</td>
</tr>
<tr>
<td>POM</td>
<td>polyacetal</td>
</tr>
<tr>
<td>POPA</td>
<td>power-oscillator–power-amplifier</td>
</tr>
<tr>
<td>PREUVE</td>
<td>PRoject Extreme Ultraviolet (France)</td>
</tr>
<tr>
<td>PS</td>
<td>preferential sputtering</td>
</tr>
<tr>
<td>PSPDI</td>
<td>phase-shifting point-diffraction interferometer</td>
</tr>
<tr>
<td>PTB</td>
<td>Physikalisch-Technische Bundesanstalt (Germany)</td>
</tr>
<tr>
<td>PV</td>
<td>peak to valley</td>
</tr>
<tr>
<td>PVD</td>
<td>physical vapor deposition</td>
</tr>
<tr>
<td>PZT</td>
<td>lead zirconium titanate</td>
</tr>
<tr>
<td>QCM</td>
<td>quartz crystal microbalance</td>
</tr>
<tr>
<td>QCM-DCU</td>
<td>quartz crystal microbalance–dual-crystal unit</td>
</tr>
<tr>
<td>RAL</td>
<td>Rutherford Appleton Laboratory (U.K.)</td>
</tr>
<tr>
<td>RC</td>
<td>radiative collapse</td>
</tr>
<tr>
<td>RC</td>
<td>resistive capacitance (time constant)</td>
</tr>
<tr>
<td>RDE</td>
<td>rotating-disk electrode</td>
</tr>
<tr>
<td>RED</td>
<td>radiation-enhanced diffusion</td>
</tr>
<tr>
<td>RES</td>
<td>radiation-enhanced sublimation</td>
</tr>
<tr>
<td>rf</td>
<td>radio frequency</td>
</tr>
<tr>
<td>RGA</td>
<td>residual gas analyzer</td>
</tr>
<tr>
<td>RIS</td>
<td>radiation-induced segregation</td>
</tr>
<tr>
<td>RMDU</td>
<td>rotating multidischarge unit</td>
</tr>
<tr>
<td>RMHD</td>
<td>radiative magnetohydrodynamics</td>
</tr>
<tr>
<td>RTE</td>
<td>radiation transport equation</td>
</tr>
<tr>
<td>SBS</td>
<td>stimulated Brillouin scattering</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td>SCDF</td>
<td>single-configuration Dirac-Fock</td>
</tr>
<tr>
<td>SCO</td>
<td>superconfiguration code</td>
</tr>
<tr>
<td>SCOPE</td>
<td>Surface Cleaning of Optics by Plasma Exposure (U.S.)</td>
</tr>
<tr>
<td>SEM</td>
<td>scanning electron microscopy</td>
</tr>
<tr>
<td>SHG</td>
<td>second-harmonic generator</td>
</tr>
<tr>
<td>SHM</td>
<td>screened hydrogenic model</td>
</tr>
<tr>
<td>SIMS</td>
<td>secondary-ion mass spectroscopy</td>
</tr>
<tr>
<td>slm</td>
<td>standard liters per minute</td>
</tr>
<tr>
<td>SOSA</td>
<td>spin-orbit split array</td>
</tr>
<tr>
<td>SPF</td>
<td>spectral purity filter</td>
</tr>
<tr>
<td>SRC</td>
<td>Semiconductor Research Corporation (U.S.)</td>
</tr>
<tr>
<td>SRIM</td>
<td>Stopping and Range of Ions in Matter</td>
</tr>
<tr>
<td>STA</td>
<td>supertransition array</td>
</tr>
<tr>
<td>STE</td>
<td>self-trapped exciton</td>
</tr>
<tr>
<td>STM</td>
<td>scanning tunneling microscope</td>
</tr>
<tr>
<td>SURF II</td>
<td>Synchrotron Ultraviolet Radiation Facility (at NIST)</td>
</tr>
<tr>
<td>TBD</td>
<td>to be determined</td>
</tr>
<tr>
<td>TDLDA</td>
<td>time-dependent local density approximation</td>
</tr>
<tr>
<td>TE</td>
<td>thermal equilibrium</td>
</tr>
<tr>
<td>TEM</td>
<td>transmission electron microscopy</td>
</tr>
<tr>
<td>TF</td>
<td>Thomas-Fermi</td>
</tr>
<tr>
<td>TGS</td>
<td>transmission grating spectrograph</td>
</tr>
<tr>
<td>TMP</td>
<td>turbomolecular pump</td>
</tr>
<tr>
<td>TOF</td>
<td>time-of-flight</td>
</tr>
<tr>
<td>TPS</td>
<td>Thomson parabola spectrometer</td>
</tr>
<tr>
<td>TRINITI</td>
<td>Troitsk Institute of Innovation and Fusion Research (Russia)</td>
</tr>
<tr>
<td>TRIM</td>
<td>Transport of Ions in Matter</td>
</tr>
<tr>
<td>TVD</td>
<td>total variation diminishing</td>
</tr>
<tr>
<td>TWG</td>
<td>Technical Working Group</td>
</tr>
<tr>
<td>UHV</td>
<td>ultrahigh vacuum</td>
</tr>
<tr>
<td>UTA</td>
<td>unresolved transition array</td>
</tr>
<tr>
<td>VNL</td>
<td>Virtual National Laboratory (U.S.)</td>
</tr>
<tr>
<td>VUV</td>
<td>vacuum ultraviolet</td>
</tr>
<tr>
<td>WDS</td>
<td>wafer dose sensor</td>
</tr>
<tr>
<td>WS</td>
<td>working standard</td>
</tr>
<tr>
<td>XPS</td>
<td>x-ray photoelectron spectroscopy</td>
</tr>
</tbody>
</table>