References

Index

2G (second generation) system, 80
3G (third generation) system, 80

Abelian group, 30
access channel, 78
acknowledgment (ACK), 79
active set, 80
adaptive implementation, 70
additive inverse, 29
additive white Gaussian noise (AWGN), 8
analog repeater, 2
analog-to-digital converter (ADC), 1
analog waveform, 3
associative, 29–30
asynchronous DS-CDMA, 59
attenuation, 10
autocorrelation, 33
autocorrelation function, 83, 92
average power, 95
average value, 91

band-limited, 11
band-limited white noise, 96
bandpass channel, 11
bandwidth, 11
bandwidth efficiency, 14
base station, 74
baseband channel, 11
binary digital data transmission system, 83
binary digits, 7
binary operation, 29
binary phase shift keying (BPSK), 17
binary sequence, 2
bits, 1
bit error rate (BER), 9
bit interval, 7
bit period, 7
blind, 67
Boltzmann’s constant, 96
break before make, 80
carrier, 17
carrier frequency, 17
carrier interference, 74

Cauchy–Schwarz inequality, 84
Cauchy’s inequality, 55
CDMA, see code division multiple access
cdmaOne, 75
cdma2000, 80
cell, 74
cellular structure, 73
cellular telephony, 73
channel decoding, 3
channel encoder, 3
chip duration, 60
chip rate, 26
closed-loop control, 78
codes, 5
code division multiple access (CDMA)
advantages of, 19
cellular systems, 41
defined, 4–5
example of, 19–23
commutative, 30
communication channel, 1, 83
constant group delay condition, 11
constrained optimization, 69
convolutional encoder, 76
convolution integral, 96
correlation matrix, 67
cross-correlation, 38
data burst randomizer, 78
data decoding, 3
decision feedback algorithm, 70
decorrelating detector, 61, 64–65
delay, 10
demodulation, 3
despreading, 26
deterministic time function, 91
digital communication, 3
digital modulation, 1
digital repeaters, 2
direct-sequence (DS) spreading, 73
direct-sequence (DS) spread spectrum, 26
direct-sequence spread spectrum CDMA (DS-CDMA), 19
distortionless transmission, 10
distributivity, 30
diversity techniques, 43

equal gain combiner (EGC), 56–57

fading, 43
fading channel, 44
feedback shift register (FSR), 35
field, 29
finite fields, 29–30
finite polynomial fields, 32
flat frequency response condition, 11
forgetting factor, 67
forward error-correction capability, 76
forward link, 74
Fourier transform, 10
frequency division multiple access (FDMA),

frequency hopping, 4
frequency response, 10
frequency reuse, 74

Galois prime number fields, 30
Gold codes, 38
gradients, 69
group, 29
Groupe Speciale Mobile (GSM, or Global System for Mobile communications), 81

handoff, 79
hard handoff, 80

ideal low-pass filter, 97
identity, 30
identity element, 29
impulse function, 95
impulse response, 48
interference, 65
interleaving, 78
intersymbol interference (ISI), 47
inverse, 30
irreducible, 32
IS-95 system, 80

jamming-resistant communication, 73
JPL ranging codes, 38

Lagrange multiplier, 69
Lagrangian cost function, 70
linear detector, 61
linear time invariant (LTI) system, 10
long code generator, 76
low probability of intercept, 73

M-ary pulse amplitude modulation (PAM), 14
make before break, 80
matched filter, 84
matched filter detector, 61
matched filter receiver, 46, 85
maximal-length PRBS, 36
maximum ratio combining (MRC), 55
mean, 91
message sink, 1
message source, 1
minimum mean square error (MMSE) detector, 61
minimum output energy (MOE) detector, 61, 69
MMSE linear detector, 66
mobile unit, 74
modulator, 3
modular arithmetic, 31
most significant bit (MSB), 34
multipath, 43
multipath channel, 43
multiple access interference, 78
multiple access problem, 4
multiple access technique, 73
multiplicative inverse, 31
multiuser detection techniques, 59

near-far effect, 59
noise, 1, 91
noise through linear filters, 96
nonsingular matrix, 68

open-loop control, 78
optimum filter, 69
orthogonal codes, 29, 39
orthogonal frequency division multiplexing, 4
outage probability, 54

paging channels, 75
period of the PRBS, 37
phase, 11
phase shift keying (PSK), 16
pilot channel, 75, 77
polynomial multiplication, 32
polynomials over $GF(2)$, 32
power control, 52, 78
power control sequence, 76
power spectral density, 83
power spectrum, 9, 94
PRBS-generating shift register, 76
preferred pair, 38
primitive polynomial, 33
private exchange, 73
processing gain, 25
pseudorandom binary sequences (PRBS), 29, 33, 35

Downloaded From: https://www.spiedigitallibrary.org/ebooks/
on 15 Jun 2020
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use
pseudorandom sequence, 32
pulse, 11
quadratic phase shift keying (QPSK), 17, 27
quadrature modulation schemes, 27
raised cosine waveform, 11
rake receiver, 51
random signals, 91
random variable, 8
rate of convergence, 70
Rayleigh-distributed, 44, 53
real numbers, 29
recursive least square (RLS), 68
redundancy, 78
repeaters, 1
roll-off factor, 3
scrambled sequence, 76
selection combining, 54
set of real numbers, 29
Shannon capacity, 15
short codes, 76
signal bandwidth, 97
signal processing chain, 3
signal-to-interference ratio (SIR), 62
signal-to-noise ratio (SNR), 9
signature, 5, 59
signature sequences, 59
signature waveforms, 65, 69
sinusoidal process, 93
soft handoff, 80
source coding, 1
space diversity, 52
spreading, 24
spreading code, 60
spreading the spectrum, 25
spreading waveform, 50
spread spectrum, 26
square-summable sequences, 84
stationary random process, 91
steepest descent algorithm, 70
symbol repeat, 78
symbol repeater, 76
synchronization (or sync) channel, 75
synchronous CDMA system, 71
synchronous system, 60
telephone switch, 73
thermal noise, 95
TIA/EIA IS-95, 75
time division multiple access (TDMA), 4
traffic, 75
transmission rate, 3
unconstrained optimization, 69
uplink (or reverse link), 75
user channels, 75
vocoding, 76
W-CDMA, 80
Walsh-Hadamard (WH) codes, 39
white noise, 8
white noise process, 95
wide-sense stationary, 91
wireless interface, 75
Raghuveer M. Rao received an M.E. degree in Electrical Communication Engineering from the Indian Institute of Science in 1981, and a Ph.D. degree in Electrical Engineering from the University of Connecticut in 1984. After serving as a member of the technical staff at Advanced Micro Devices Inc. from 1985 to 1987, he joined the Rochester Institute of Technology, where he is a professor of electrical engineering and imaging science. He has held visiting appointments with the Indian Institute of Science, the U.S. Naval Surface Warfare Center, the U.S. Air Force Research Laboratories, and Princeton University. He has served as associate editor for IEEE Transactions on Signal Processing and IEEE Transactions on Circuits and Systems Part II. He is currently an associate editor for the Journal of Electronic Imaging. Dr. Rao is a recipient of the IEEE Signal Processing Society’s Best Young Author Paper Award and is a Fellow of SPIE—The International Society for Optical Engineering.

Sohail Dianat received a B.S. degree in Electrical Engineering from the Arya-Mehr University of Technology, Tehran, Iran, in 1973, and M.S. and D.Sc. degrees in Electrical Engineering from George Washington University, Washington, D.C., in 1977 and 1981, respectively. In September 1981 he joined the Rochester Institute of Technology, where he is a professor of electrical engineering and imaging science. Dr. Dianat has taught many short courses in the areas of digital signal processing and digital communication. He received the Best Unclassified Paper Award at the 1993 Annual IEEE Military Communication Conference (MILCOM ‘93). His current research interests include digital signal/image processing and wireless communication, two areas in which he has published numerous papers. He holds eight patents in the field of control for digital printing. He is a Fellow of SPIE—The International Society for Optical Engineering.