Index

A
ABCD ray matrix, 92,108
 method of, 107-118,152-154,396-402
table of, 108
Absorption (see Atmospheric scattering)
Adaptive optics, 21,609
 scintillation, 464
 system components, 609
Aerosol scattering, 12
Airy disk, 615
Amplitude, 87,88
Angle-of-arrival, 199-201
 variance, 200,492
Angular frequency, 85
Angular spectrum, 206-207
Anisoplanatism, 493
 (See also, Isoplanatic angle)
Anisotropic turbulence, 480
Annular beam, 720
 mean irradiance, 724
 scintillation index, 728
Aperture-averaging, 24,281,409-410
 array, 465-467
 beam wave, 419-420
 plane wave, 412-413,496
 spherical wave, 415-416
Array detector, 465-469
Asymptotic theory, 330
 for scintillation index, 330-332
Atmospheric
 absorption, 11
 boundary layer, 480
 coherence width, \(r_0 \), 194,272,492,608,617
 scattering, 11
 spectrum (see Power spectrum)
 transmission, 12
 turbulence, 14
 (See also, Turbulence)
Attenuation, 9,616
Autocorrelation function (see Correlation function)
Autocovariance function (see Covariance function)
Average,
 ensemble, 38
 irradiance (see Mean irradiance)
 time, 41-42
B
Backscatter amplification effect, 535,546
 correlation function, 546,549,551,553-554,
 558-559,576-581,589
Bandwidth, 16
Beam
 jitter, 272,503
 spreading (see Beam radius)
 waist, 9, 97-98,99-100
 wave (see Gaussian-beam wave)
Beam parameters,
 effective, 242,349,681-682
 input plane (transmitter), 92-94,96-98,183
 output plane (receiver), 94-96,99-101,183
Beam radius (spot size), 88,93,189-190,237-238
 double-pass, 551,553,557
 higher-order modes, 101-107,715,717-719
 long term, 189-190,238,404,494-495,500
 partially coherent beam, 677,679
 phase screen, 655
 short term, 205-206
Beam wander, 15,201-205,209-210,269-272,
 501-502
 effective pointing error, 272-274,503
 filter function, 203,245
 strong fluctuations, 245-246
Bessel beam, 731-732
Bessel function, 139,150
 modified, 125,188
Bistatic
 channel, 536
 system, 535,
Bit error-rate (BER), 447,463,469-470,691-692
Born approximation, 141-143
 first-order, 142
 higher-order, 143
 normalized, 144
Bufton wind model, 481
Bump spectrum (see Hill spectrum and
 Modified spectrum)
C
Carrier-to-noise ratio (CNR),
Cell (see Eddy)
Channel models, 22
Clear-air turbulence, 480
Coherence,
bandwidth, 744
spatial, 15
time, 744
Coherence width (see Atmospheric coherence width, r_0)
Coherence radius, 161,192-199,208-209,491-492
double-pass, 571,581,590
Gaussian-beam wave, 198
partially coherent beam, 680
phase screen, 656
plane wave, 194
spherical wave, 196
strong fluctuations, 240,243
Coherent
detection, 24,443
transfer function (CFT), 611-613
Collimated beam, 88-89
(See also, Gaussian-beam wave)
Communication system (FSO), 15-17, 22-26
laser satellite, 17-19,478-479
terrestrial, 442-443
Complex
amplitude, 43,85,542
degree of coherence, 188
Complex phase perturbation, 143,183
folded path, 544
reciprocal path, 545
spectral representation for, 145-147,399-400
Conditional density function, 368
Confluent hypergeometric function, 71,187,758-759
Conformal transformation, 99
Convergent beam, 88-89
(See also, Gaussian-beam wave)
Correlation between incident and reflected waves (see Backscatter amplification effect)
Correlation function, 38
Correlation width (irradiance fluctuations), 281,498
Covariance function, 39
normalized, 39
Covariance function of irradiance, 261,279-281,361-364,498,509
double-pass, 560,561,581
normalized, 281,362
phase screen, 658-659
Covariance function, of log amplitude, 279
of phase, 294-296
of refractive index, 64,139
Cross-coherence function (see Fourth-order moment)
Crossings per second (see Number of crossings)
Cross-spectral purity, 669
Cumulants, 184
Cumulative probability density, 371,451-452
D
Decibel (dB), 451
Delta correlated, 139
Delta function, 44,87,139
Detector,
array, 465-469
cohherent, 24,443
direct, 23,443-444
point, 23,281
Detector noise, 444
Diffraction, 8
Diffuser, 671
correlation radius, 672
correlation width, 671
Diffuse surface (see Lambertian surface)
Diffusivity, 63
Digital transmission, 447
Dissipation range, 59
diffusion, 62
viscous, 59
Divergent beam, 88-89
(See also, Gaussian-beam wave)
Doppler shift, 538
E
Earth’s atmosphere, 479-480
C_n^2 profile of, 481-482
outer scale models of, 483
Echo signal, 536
Eddy, 59
Effective
beam parameters, 242,349
atmospheric spectrum, 327
Eikonal, 111,634
Electromagnetic spectrum, 6
Energy cascade theory, 59
Energy dissipation rate, 60
Enhanced backscatter, 535, 546 (See also, Backscatter amplification effect)
Ensemble, 36
 average, 38
Ergodic random process, 42
Error function, 447, 756
Expected number of fades, 447-448, 455-456, 513-514, 519
Exponential spectrum, 68, 203, 328
Extended Huygens-Fresnel principle, 159, 234-241
Extended medium model, 25
Extended Rytov theory, 159-165, 324-328
Extinction coefficient, 12

F
Fade,
 probability of, 445, 451-452, 511, 518
 threshold parameter, 451, 511, 518
False alarm, 445
 probability of, 447
 rate (FAR), 448
Far field, 98
Femtosecond, 738, 742
Field, 84
 coherent portion of, 182
Field of view (FOV), 536, 610
Flattened Gaussian beam, 729-731
Flow chart, 30, 181, 259
Focused beam, 97, 98, 204, 269
Focusing parameter, 96
Folded path, 117, 543-544
Four-frequency cross-coherence function, 746
Fourier transform, 43
 inverse, 43
 propagation geometry for, 402
Fourth-order moment, 182, 235, 260, 559
Fractional fade time (see Probability of fade)
Free atmosphere, 480
Free space optical (FSO) communication, 15-17, 442, 478-479
Frequency of fade (surge), 447-448, 455-456, 513-514, 519
Fresnel zone size, 325
Fried parameter (see Atmospheric coherence width, \(r_0 \))
Frozen turbulence hypothesis, 72, 207

G
Gamma distribution, 368, 370, 449
Gamma function, 75, 755
Gamma-gamma distribution, 370, 450, 510, 699
cumulative, 371
Gaussian
 aperture, 108, 116, 612
 lens, 113
 mirror, 117
Gaussian-beam wave, 8, 88, 182-183
definition of, 8, 88
double-pass, 551, 561, 581-584
 flattened, 729-731
free-space irradiance for, 94
higher-order Hermite, 101
higher-order Laguerre, 106
irradiance covariance function for (see Covariance function of irradiance)
 lowest order (\(\text{TEM}_{00} \)), 88
 mean irradiance for (see Mean irradiance)
mutual coherence function for, 188, 191
scintillation index for, 262-263, 352-353, 356
 super, 729
 waist, 97-98, 99-100
wave structure function for, 196-199
Gaussian
distribution, 446-447
Schell-model, 671
spectrum, 673
Geometric focus, 97-98, 99-101
Geometrical optics approximation, 165, 330
Generalized hypergeometric function, 190, 759-760
Geostationary orbit (GEO), 484
Geosynchronous orbit (GEO), 484
Green’s function, 90, 142, 151
 for Huygen’s-Fresnel integral, 90
generalized, 111, 153
Greenwood
 frequency, 622
time constant, 622

H
Hard aperture, 116, 612
Helmholtz equation, 85
 stochastic, 138, 158
Hermite equation, 103
Hermite-Gaussian functions, 101, 715
Hermite polynomial, 101, 715, 731
elegant, 129
Hill spectrum, 69-70
Hufnagle-Valley turbulence model, 481
Huygens-Fresnel integral, 90, 105
 extended, 159, 234-241
generalized, 111
Hypergeometric function, 190,757-758
confluent, 71,187,758-759
generalized, 190,759-760

Image,
blurring, 21,609
dancing, 21,609
displacement, 201
plane, 115
resolution, 116
short exposure, 609

Imaging, 21
adaptive optics, 609
coherent system, 610
hybrid techniques, 609
incoherent system, 614
speckle, 609

Impulse response function, 151,611,613

Index of refraction, 63-71
covariance function, 64,139
fluctuations, 63-71
inner scale for, 64
outer scale for, 64
spectrum models for, 66-71
structure constant, 64-65
structure function, 64-71

Inertial range, 59
Inertial-convective range, 62
Inner scale of turbulence, 59
index of refraction, 64
temperature, 63
velocity, 59

Intensity (see Irradiance)
Ionosphere, 11

Irradiance, 94
fluctuations, 9,15
(See also, scintillation index)
free space, 94,105,106
integrated, 686
mean (see Mean irradiance)
moments, 155,157,175
temporal spectrum, 282-288

Irradiance flux variance, 410
Isoplanatic angle, 493,622
Isotropic medium, 46,58

K
K distribution, 368
Kinematic viscosity, 59
Kolmogorov microscale, 60

Kolmogorov spectrum, 62,63,67,289
Kummer function (see Confluent hypergeometric function)

L
Laguerre-Gaussian functions, 106,718
Laguerre polynomial, 106,155,719,730
Lambertian surface, 539,589
Laminar flow, 58
Laplacian, 85,137
Laser
acronym, 4
beacon, 493,622
guide star, 493,622
wavelengths, 7
Laser radar, 20-21,534-539,693
imaging, 624
Laser satcom, 17-19,478-479
Lens,
Gaussian model, 113
law, 115
Lidar, 20,534
Locally homogeneous, 48
Log amplitude, 155,262
covariance, 279
mean, 310-311
variance, 157,259
structure function, 193,194
Log-irradiance variance, 259,262
Lognormal distribution, 155-157,451,510
Lognormal-Rician distribution, 369
Longitudinal phase shift, 93,96
Long-term spot size, 189-190,238,404,494-495,500 (See also, Beam radius)
Low Earth orbit (LEO), 484

M
Markov approximation, 138
Maser, 7
Mean field, 158,182,186-187,232
Mean irradiance, 189-190,208,237-238,404,406,407,494,716
double-pass, 550,553,557,589
downlink, 494
partially coherent beam, 672,679
phase screen, 655
pulse, 743-744
strong fluctuations, 237-238
temporal, 742
uplink, 500
Mean fade time, 456
downlink, 515
Index

terrestrial, 456
uplink, 520
Mesosphere, 11
Microscale of turbulence, 60
Mie scattering, 12
Miller-Zieske profile, 481
Mirror,
(See also, Target)
Gaussian, 117
Modified atmospheric spectrum, 68-69
Modified von Kármán spectrum (see Von
Kármán spectrum)
Modulus of the complex degree of
coherence, 193,655,672,679,697
Modulation process, 163,325,329
Modulation transfer function (MTF), 116,
614-618,624
short term, 620
Molniya orbit, 484
Moments,
fourth-order coherence function, 182,235,
260,559
irradiance, 155,157,175,208
long-time-average, 184
mean field, 182,186-187,232,235
mutual coherence function, 182,187-188,
232-233,547,653,674-675,678,696
temporal, 745
Monochromatic wave, 85
Monostatic
channel, 117,536
system, 117,535-536
Mutual coherence function (MCF), 158,182,
187-188,232-233
double-pass, 547
free space, 186
Gaussian-beam wave, 188,191
partially coherent beam, 674-676,678,696
phase screen, 653
plane wave, 190
spherical wave, 191
strong fluctuations, 232-233,239-241
two frequency, 740-742

N
Narrowband, 742
Near field, 98
Negative exponential distribution, 368
Noise power, 445
Nonisotropie, 60,480
Number of crossings (fades and surges), 447-
448,455-456

O
Obukhov-Corrsin constant, 63
On-off keying (OOK), 447
Optical communications, 15-17
(See also, Communication systems)
Optical depth, 12
Optical transfer function (OTF), 115,614-615
Optical turbulence, 15,58
definition of, 15,58
profile, 481-482
Orbit, 484-485
Outer scale of turbulence, 59
model for, 483

P
Parabolic equation, 158,231
method of moments, 157-158,231-233
Paraxial
approximation, 85,109
wave equation, 85-86
Path amplitude weighting parameter, 146
Perturbation methods,
Born approximation, 141-143
Rytov approximation, 143-154
Phase, 88,288,301
covariance, 294-296
perturbation (see Complex phase
perturbation)
structure function, 193-195,291-294
temporal spectrum, 296-298
variance, 289-291,635-636
Phase front radius of curvature, 88,93
Phase screen, 25,649
multiple, 26,659-661
structure constant, 652
thin, 652
Photons, 6
Plane wave, 8,87
covariance function, 280,498
definition of, 8,87
double-pass, 557,568,576
mutual coherence function, 190-191
scintillation index, 264-265,336,340,497
structure function, 193
Pochhammer symbol, 220,756-757
Point ahead angle, 488,493
Point detector (receiver), 23,281
Point reflector (see Target, point)
Point spread function, 115,614-615
short term, 621
Pointing and tracking, 488
point ahead, 488,493
Pointing error, 272,503
variance, 273-274,350,503
Potential temperature, 62
Power, 94
signal, 445
total average, 41
Power spectral density (see Power spectrum)
Power spectrum, 42-45
exponential, 68,203,308
Hill spectrum, 69-70
index of refraction, 66-71
Kolmogorov, 62,63,67
modified, 68-69
one-dimensional, 46
Tatarskii, 67
temporal (see Temporal spectrum)
three-dimensional, 47,139
two-dimensional, 47-48,140,148,164
von Kármán, 68
Principle of reciprocity, 271
Probability density function, 154,367
gamma distribution, 368,370,449
gamma-gamma distribution, 370,450,510,
691
gaussian distribution, 446-447
K distribution, 368
lognormal distribution, 155-157,451,510
lognormal-Rician distribution, 369
modified Rician distribution, 154-155
negative exponential distribution, 368
Rayleigh distribution, 154
Rician distribution, 175
uniform distribution, 154
Probability of
detection, 447,461-462
fade, 445,451-452,462,511,518
false alarm, 445,447,462
bit error-rate (BER), 446,463,469
Propagation,
ABCD optical system, 107-118
double-pass, 117
Propagation paths,
folded, 117,543-544
reciprocal, 543-544
Pulse,
arrival time, 745
coherence bandwidth, 744
duty cycle, 20,537,
Gaussian, 742
half-width, 742
length, 538-539
narrowband, 742
repetition frequency, 20,537
repetition interval, 20,537
spreading, 744
wideband, 742
Q
Quantum efficiency, 445
Quasi-frequency, 448,456
R
Radar, 20
(See also, laser radar)
Random phase screen (see Phase screen)
Random process, 36
ergodic, 42
stationary, 38
wide-sense stationary, 39
with stationary increments, 40
Random field, 45-49
homogeneous, 45
isotropic, 46
locally homogeneous, 48
Range equation, 537-538
Ray matrix (see ABCD ray matrix)
Rayleigh
distribution, 154
range, 98
scattering, 11
Receiver, 22-24
beam parameters, 94-96,99-101
cohere detection, 24
direct detection, 23
Reciprocal path, 543-544
wave, 272
Reduced wave equation, 85
Reflection parameter, 589,696
Reflector (see Target)
Refractive index (see Index of refraction)
Remote sensing, 21
Resolution, 116
long-exposure, 616,619
maximum, 434,619
Resolved target, 535
Retroreflector,
(see Target, retroreflector)
Reynolds number, 59
Rice-Nakagami distribution (see Rician
distribution)
Rician distribution, 175
Riemann-Stieltjes integral, 43,145,164
Rytov approximation, 143-154,183-186,543,649
Index

- **extended**, 159-165, 324-328
 - first-order, 145-146
 - second-order, 146-147
 - spectral representations for, 145-147, 399, 544-545
 - statistical moments of, 147-150, 401

- **Rytov variance for**,
 - beam wave, 35
 - phase screen, 653
 - plane wave, 140, 189, 263-264
 - spherical wave, 264

S

- **Satellite**
 - laser communication system, 17-19, 478-479
 - orbits, 484-485
- **Saturation regime**, 140, 323
- **Scattering disk**, 161, 325
- **Scintillation index**, 261, 299-301, 405, 406
 - double-pass, 547, 561, 565, 581, 584, 591, 593, 625
 - downlink channel, 495-496
 - focusing regime, 323
 - Gaussian-beam wave, 262-263, 352, 356
 - large-scale, 329
 - longitudinal component, 263, 274-275, 503
 - partially coherent beam, 682-684, 685-688, 689-691, 701-702
 - phase screen, 656-657
 - plane wave, 264-265, 336, 340
 - radial component, 263, 349-350
 - saturation regime, 140, 323
 - small-scale, 329
 - spherical wave, 264, 342-343, 345
 - temporal, 747
 - uplink channel, 503-504, 506
- **Seeing**, 4, 608, 618
- **Short exposure MTF**, 620
- **Short term beam spread**, 205-206
- **Signal current power**, 445
- **Signal-to-noise ratio (SNR)**, 445-446
 - mean, 460-461, 466, 627
- **Slant paths**, 207-210, 299-301
- **SLC models**, 481
 - day, 482
 - night, 482
- **Slew rate**, 481
- **Soft aperture (see Gaussian aperture)**
- **Spatial**
 - acquisition, 488
 - coherence radius (see Coherence radius)
 - diversity, 465
 - filters, 161-164, 326-328
- **Speckle**
 - imaging, 609
 - reflection coefficient, 589, 696
 - size, 673, 677-678, 697-700
- **Speckle cells**,
 - number of, 221, 671, 680, 698-700
 - Spectral representation, 145-147
 - first-order, 145-146
 - for \(ABCD\) system, 399-400
 - second-order, 146-147
- **Spectrum (See also, Power spectrum)**,
 - electromagnetic, 6
 - temporal (see Temporal spectrum)
- **Speed of light**, 5
- **Spherical wave**, 8, 87
 - covariance function, 280-281
 - definition of, 8, 87
 - double-pass, 552, 565, 572, 576
 - mutual coherence function, 191
 - scintillation index, 264, 342-343, 345
 - structure function, 195-196
- **Spot size (see Beam radius)**
- **Stationary increments**, 40
- **Stationary random process**, 38
 - wide-sense, 39
- **Stratosphere**, 10-11
- **Strehl ratio**, 407-408, 501, 623
- **Stochastic process (see Random process)**
- **Strong fluctuations**,
 - definition of, 140, 230
- **Structure constant**,
 - Hufnagle-Valley model for, 481
 - index of refraction, 64-65
 - SLC day model for, 482
 - SLC night model for, 482
 - temperature, 63
 - velocity, 60
- **Structure function**, 40
 - definition of, 40
 - index of refraction, 64-71
 - log-amplitude, 193-194, 196
 - phase, 193, 195-196
 - temperature, 62
 - velocity, 60-61
 - wave (see Wave structure function)
- **Structure parameter (see Structure constant)**
- **Super-Gaussian beam**, 729
- **System function**, 151, 739

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 16 Oct 2019
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use
Target, classification, 539
Lambert (diffuse), 539, 589
plane mirror, 545, 553, 558, 563, 566, 569
point, 575
retroreflector, 546, 554, 558, 563, 566, 569
Tatarskii spectrum, 67
Taylor frozen turbulence hypothesis, 72, 207
Temperature fluctuations, 62-63
inner scale for, 63
spectrum for, 63
structure constant for, 63
structure function for, 62
Temporal spectrum for
field, 207
irradiance, 282-288, 365, 421-424
phase, 296-298
Temporal statistics, 72-73
Thermosphere, 11
Thin phase screen, 652
Threshold detection, 445
Threshold-to-noise ratio (TNR), 448
Tilt, 272
Time average, 41-42
Tracking, 488, 504
Transceiver, 535
Transmittance, 12
Transmitter, 22
Tropopause, 10
Troposphere, 10
Turbulence,
 atmospheric boundary layer (ABL), 480
cascade theory, 59
clear-air, 480
dissipation range, 59
eddy, 59
homogeneous and isotropic, 60
inertial range, 59
inner scale, 59
Kolmogorov theory, 58-59
phase screen model, 648
outer scale, 59
Two-frequency MCF, 740-742
Two-thirds law, 60
Uniform distribution, 154
Units of measurements, 6
Unit step function, 275
Unresolved target, 535
Variance for
 angle-of-arrival fluctuations, 200
 beam jitter, 272, 503
 beam wander, 201-205
 log-amplitude fluctuations, 259, 262
 phase, 289-291
 pointing error, 273-274, 350
Velocity fluctuations, 59-60
inner scale for, 59
spectrum, 62
structure constant, 60
structure function, 60, 61
Viscosity, 59
Visual range, 12
von Kármán spectrum, 68, 187
Waist (see Beam waist)
Wander (see Beam wander)
Wave equation, 84
 reduced, 85
stochastic, 137
Wave front radius of curvature (see Phase front radius of curvature)
Wave number, 85
Wave structure function, 193-199
 double-pass, 571-572
 Gaussian-beam wave, 188, 196-199
 phase screen, 656
 plane wave, 193-194
 spherical wave, 195
Wavelength, 85
Weak fluctuations,
 definition of, 140, 230
Wide-sense stationary, 39
Wiener-Khintchine theorem, 44
Wind model, 481
Zenith angle, 490
Zernike
 filter functions, 464, 632-634
 modes, 464, 631
 polynomials, 628, 630
Zero crossings (see Frequency of fade and Number of crossings)
Larry C. Andrews is a professor of mathematics at the University of Central Florida and an associate member of the College of Optics/CREOL. He is also an associate member of the Florida Space Institute (FSI). Previously, he held a faculty position at Tri-State University and was a staff mathematician with the Magnavox Company, antisubmarine warfare (ASW) operation. He received a doctoral degree in theoretical mechanics in 1970 from Michigan State University. Dr. Andrews has been an active researcher in optical wave propagation through random media for more than 25 years and is the author or co-author of ten textbooks on topics of differential equations, boundary value problems, special functions, integral transforms, wave propagation through random media, and mathematical techniques for engineers. Along with wave propagation through random media, his research interests include special functions, random variables, atmospheric turbulence, and signal processing.

Ronald L. Phillips is Director of the Florida Space Institute (FSI) and a professor in the Department of Electrical and Computer Engineering at the University of Central Florida. Dr. Phillips is also a member of the Department of Mathematics and an associate member of the College of Optics/CREOL. He has held positions on the faculties at Arizona State University and the University of California, San Diego. He received a doctoral degree in Electrical Engineering in 1970 from Arizona State University. Dr. Phillips has been an active researcher in wave propagation through random media for more than 28 years. He was awarded a Senior NATO Postdoctoral Fellow in 1977 and the American Society for Engineering Education 1983 Medal for outstanding contributions in research. Dr. Phillips is co-author of two textbooks on wave propagation through random media and mathematical techniques for engineers. In addition to optical wave propagation, his research interests include optical communications and imaging through atmospheric turbulence.