Index

A

ABCD ray matrix, 92, 108
 method of, 107-118, 152-154, 396-402
table of, 108
Absorption (see Atmospheric scattering)
Adaptive optics, 21, 609
 scintillation, 464
 system components, 609
Aerosol scattering, 12
Airy disk, 615
Amplitude, 87, 88
Angle-of-arrival, 199-201
 variance, 200, 492
Angular frequency, 85
Angular spectrum, 206-207
Anisoplanatism, 493
 (See also, Isoplanatic angle)
Anisotropic turbulence, 480
Annular beam, 720
 mean irradiance, 724
 scintillation index, 728
Aperture-averaging, 24, 281, 409-410
 array, 465-467
 beam wave, 419-420
 plane wave, 412-413, 496
 spherical wave, 415-416
Array detector, 465-469
Asymptotic theory, 330
 for scintillation index, 330-332
Atmospheric
 absorption, 11
 boundary layer, 480
 coherence width, \(r_0 \), 194, 272, 492, 608, 617
 scattering, 11
 spectrum (see Power spectrum)
 transmission, 12
 turbulence, 14
 (See also, Turbulence)
Attenuation, 9, 616
Autocorrelation function (see Correlation function)
Autocovariance function (see Covariance function)
Average,
 ensemble, 38
 irradiance (see Mean irradiance)
 time, 41-42

B
Backscatter amplification effect, 535, 546
 correlation function, 546, 549, 551, 553-554, 558-559, 576-581, 589
Bandwidth, 16
Beam
 jitter, 272, 503
 spreading (see Beam radius)
 waist, 9, 97, 99, 100
 wave (see Gaussian-beam wave)
Beam parameters,
 effective, 242, 349, 681-682
 input plane (transmitter), 92-94, 96-98, 183
 output plane (receiver), 94-96, 99-101, 183
Beam radius (spot size), 88, 93, 189-190, 237-238
 double-pass, 551, 553, 557
 higher-order modes, 101-107, 715, 717-719
 long term, 189-190, 238, 404, 494-495, 500
 partially coherent beam, 677, 679
 phase screen, 655
 short term, 205-206
Beam wander, 15, 201-205, 209-210, 269-272, 501-502
 effective pointing error, 272-274, 503
 filter function, 203, 245
 strong fluctuations, 245-246
Bessel beam, 731-732
Bessel function, 139, 150
 modified, 125, 188
Bistatic
 channel, 536
 system, 535
 Bit error-rate (BER), 447, 463, 469-470, 691-692
Born approximation, 141-143
 first-order, 142
 higher-order, 143
 normalized, 144
Bufton wind model, 481
Bump spectrum (see Hill spectrum and Modified spectrum)
C
Carrier-to-noise ratio (CNR),
Cell (see Eddy)
Channel models, 22
Clear-air turbulence, 480
Coherence,
bandwidth, 744
spatial, 15
time, 744
Coherence width (see Atmospheric coherence width, \(r_0 \))
Coherence radius, 161,192-199,208-209,491-492
double-pass, 571,581,590
Gaussian-beam wave, 198
partially coherent beam, 680
phase screen, 656
plane wave, 194
spherical wave, 196
strong fluctuations, 240,243
Coherent
detection, 24,443
transfer function (CFT), 611-613
Collimated beam, 88-89
(See also, Gaussian-beam wave)
Communication system (FSO), 15-17, 22-26
laser satellite, 17-19,478-479
terrestrial, 442-443
Complex
amplitude, 43,85,542
degree of coherence, 188
Complex phase perturbation, 143,183
folded path, 544
reciprocal path, 545
spectral representation for, 145-147,399-400
Conditional density function, 368
Confluent hypergeometric function, 71,187,758-759
Conformal transformation, 99
Convergent beam, 88-89
(See also, Gaussian-beam wave)
Correlation between incident and reflected waves (see Backscatter amplification effect)
Correlation function, 38
Correlation width (irradiance fluctuations), 281,498
Covariance function, 39
normalized, 39
Covariance function of irradiance, 261,279-281,361-364,498,509
double-pass, 560,561,581
normalized, 281,362
phase screen, 658-659
Covariance function, of log amplitude, 279
of phase, 294-296
of refractive index, 64,139
Cross-coherence function (see Fourth-order moment)
Crossings per second (see Number of crossings)
Cross-spectral purity, 669
Cumulants, 184
Cumulative probability density, 371,451-452
D
Decibel (dB), 451
Delta correlated, 139
Delta function, 44,87,139
Detector,
array, 465-469
coherent, 24,443
direct, 23,443-444
point, 23,281
Detector noise, 444
Diffraction, 8
Diffuser, 671
correlation radius, 672
correlation width, 671
Diffuse surface (see Lambertian surface)
Diffusivity, 63
Digital transmission, 447
Dissipation range, 59
diffusion, 62
viscous, 59
Divergent beam, 88-89
(See also, Gaussian-beam wave)
Doppler shift, 538
E
Earth’s atmosphere, 479-480
\(C_n^2 \) profile of, 481-482
outer scale models of, 483
Echo signal, 536
Eddy, 59
Effective
beam parameters, 242,349
atmospheric spectrum, 327
Eikonal, 111,634
Electromagnetic spectrum, 6
Energy cascade theory, 59
Energy dissipation rate, 60
Index

Enhanced backscatter, 535, 546 (See also, Backscatter amplification effect)
Ensemble, 36
 average, 38
Ergodic random process, 42
Error function, 447, 756
Expected number of fades, 447-448, 455-456, 513-514, 519
Exponential spectrum, 68, 203, 328
Extended Huygens-Fresnel principle, 159, 234-241
Extended medium model, 25
Extended Rytov theory, 159-165, 324-328
Extinction coefficient, 12

Fade,
 probability of, 445, 451-452, 511, 518
 threshold parameter, 451, 511, 518
False alarm, 445
 probability of, 447
 rate (FAR), 448
Far field, 98
Femtosecond, 738, 742
Field, 84
 coherent portion of, 182
Field of view (FOV), 536, 610
Flattened Gaussian beam, 729-731
Flow chart, 30, 181, 259
Focused beam, 97, 98, 204, 269
Focusing parameter, 96
Folded path, 117, 543-544
Four-frequency cross-coherence function, 746
Fourier transform, 43
 inverse, 43
 propagation geometry for, 402
Fourth-order moment, 182, 235, 260, 559
Fractional fade time (see Probability of fade)
Free atmosphere, 480
Free space optical (FSO) communication, 15-17, 442, 478-479
Frequency of fade (surge), 447-448, 455-456, 513-514, 519
Fresnel zone size, 325
Fried parameter (see Atmospheric coherence width, \(r_0 \))
Frozen turbulence hypothesis, 72, 207

G
Gamma distribution, 368, 370, 449
Gamma function, 75, 755
Gamma-gamma distribution, 370, 450, 510, 699
 cumulative, 371
Gaussian
 aperture, 108, 116, 612
 lens, 113
 mirror, 117
Gaussian-beam wave, 8, 88, 182-183
 definition of, 8, 88
 double-pass, 551, 561, 581-584
 flattened, 729-731
 free-space irradiance for, 94
 higher-order Hermite, 101
 higher-order Laguerre, 106
 irradiance covariance function for
 (see Covariance function of irradiance)
 lowest order (TEM00), 88
 mean irradiance for (see Mean irradiance)
 mutual coherence function for, 188, 191
 scintillation index for, 262-263, 352-353, 356
 super, 729
 waist, 97-98, 99-100
 wave structure function for, 196-199
Gaussian
 distribution, 446-447
 Schell-model, 671
 spectrum, 673
Geometric focus, 97-98, 99-101
Geometrical optics approximation, 165, 330
Generalized hypergeometric function, 190, 759-760
Geostationary orbit (GEO), 484
Geosynchronous orbit (GEO), 484
Green’s function, 90, 142, 151
 for Huygen’s-Fresnel integral, 90
 generalized, 111, 153
Greenwood
 frequency, 622
 time constant, 622
H
Hard aperture, 116, 612
Helmholtz equation, 85
 stochastic, 138, 158
Hermite equation, 103
Hermite-Gaussian functions, 101, 715
Hermite polynomial, 101, 715, 731
 elegant, 129
Hill spectrum, 69-70
Hufnagle-Valley turbulence model, 481
Huygens-Fresnel integral, 90, 105
 extended, 159, 234-241

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 11 Jul 2019
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use
Index

778

generalized, 111

Hypergeometric function, 190,757-758

confluent, 71,187,758-759
generalized, 190,759-760

I

Image,

blurring, 21,609
dancing, 21,609
displacement, 201
plane, 115
resolution, 116
short exposure, 609

Imaging, 21

adaptive optics, 609
cohort system, 610
hybrid techniques, 609
incoherent system, 614

speckle, 609

Impulse response function, 151,611,613

Index of refraction, 63-71
covariance function, 64,139
fluctuations, 63-71
inner scale for, 64
outer scale for, 64

spectrum models for, 66-71
structure constant, 64-65
structure function, 64-71

Inertial range, 59

Inertial-convective range, 62

Inner scale of turbulence, 59

index of refraction, 64
temperature, 63
velocity, 59

Intensity (see Irradiance)

Ionsphere, 11

Irradiance, 94

fluctuations, 9,15

(See also, scintillation index)
free space, 94,105,106
integrated, 686
mean (see Mean irradiance)
moments, 155,157,175
temporal spectrum, 282-288

Irradiance flux variance, 410
Isoplanatic angle, 493,622
Isotropic medium, 46,58

K

K’ distribution, 368

Kinematic viscosity, 59

Kolmogorov microscale, 60

Kolmogorov spectrum, 62,63,67,289

Kummer function (see Confluent hypergeometric function)

L

Laguerre-Gaussian functions, 106,718

Laguerre polynomial, 106,155,719,730

Lambertian surface, 539,589

Laminar flow, 58

Laplacian, 85,137

Laser

acronym, 4

beacon, 493,622
guide star, 493,622

wavelengths, 7

Laser radar, 20-21,534-539,693

imaging, 624

Laser satcom, 17-19,478-479

Lens,

Gaussian model, 113

law, 115

Lidar, 20,534

Locally homogeneous, 48

Log amplitude, 155,262

covariance, 279

mean, 310-311

variance, 157,259

structure function, 193,194

Log-irradiance variance, 259,262

Lognormal distribution, 155-157,451,510

Lognormal-Rician distribution, 369

Longitudinal phase shift, 93,96

Long-term spot size, 189-190,238,404,494-495,500 (See also, Beam radius)

Low Earth orbit (LEO), 484

M

Markov approximation, 138

Maser, 7

Mean field, 158,182,186-187,232

Mean irradiance, 189-190,208,237-238,404,406,407,494,716
double-pass, 550,553,557,589
downlink, 494

partially coherent beam, 672,679

phase screen, 655

pulse, 743-744

strong fluctuations, 237-238

temporal, 742

uplink, 500

Mean fade time, 456
downlink, 515
Index

terrestrial, 456
uplink, 520
Mesosphere, 11
Microscale of turbulence, 60
Mie scattering, 12
Miller-Zieske profile, 481
Mirror,
(See also Target)
Gaussian, 117
Modified atmospheric spectrum, 68-69
Modified von Kármán spectrum (see Von Kármán spectrum)
Modulus of the complex degree of coherence, 193,655,672,679,697
Modulation process, 163,325,329
Modulation transfer function (MTF), 116, 614-618,624
short term, 620
Molniya orbit, 484
Moments,
fourth-order coherence function, 182,235, 260,559
irradiance, 155,157,175,208
long-time-average, 184
mean field, 182,186-187,232,235
mutual coherence function, 182,187-188, 232-233,547,653,674-675,678,696
temporal, 745
Monochromatic wave, 85
Monostatic
channel, 117,536
system, 117,535-536
Mutual coherence function (MCF), 158,182, 187-188,232-233
double-pass, 547
free space, 186
Gaussian-beam wave, 188,191
partially coherent beam, 674-676,678,696
phase screen, 653
plane wave, 190
spherical wave, 191
strong fluctuations, 232-233,239-241
two frequency, 740-742

N
Narrowband, 742
Near field, 98
Negative exponential distribution, 368
Noise power, 445
Nonisotropic, 60,480
Number of crossings (fades and surges), 447-448,455-456

O
Obukhov-Corrsin constant, 63
On-off keying (OOK), 447
Optical communications, 15-17
(See also Communication systems)
Optical depth, 12
Optical transfer function (OTF), 115,614-615
Optical turbulence, 15,58
definition of, 15,58
profile, 481-482
Orbit, 484-485
Outer scale of turbulence, 59
model for, 483

P
Parabolic equation, 158,231
method of moments, 157-158,231-233
Paraxial
approximation, 85,109
wave equation, 85-86
Path amplitude weighting parameter, 146
Perturbation methods,
Born approximation, 141-143
Rytov approximation, 143-154
Phase, 88,288,301
covariance, 294-296
perturbation (see Complex phase perturbation)
structure function, 193-195,291-294
temporal spectrum, 296-298
variance, 289-291,635-636
Phase front radius of curvature, 88,93
Phase screen, 25,649
multiple, 26,659-661
structure constant, 652
thin, 652
Photons, 6
Plane wave, 8,87
covariance function, 280,498
definition of, 8,87
double-pass, 557,568,576
mutual coherence function, 190-191
scintillation index, 264-265,336,340,497
structure function, 193
Pochhammer symbol, 220,756-757
Point ahead angle, 488,493
Point detector (receiver), 23,281
Point reflector (see Target, point)
Point spread function, 115,614-615
short term, 621
Pointing and tracking, 488
point ahead, 488,493
<table>
<thead>
<tr>
<th>Term</th>
<th>page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pointing error</td>
<td>272,503</td>
</tr>
<tr>
<td>variance</td>
<td>273-274,350,503</td>
</tr>
<tr>
<td>Potential temperature</td>
<td>62</td>
</tr>
<tr>
<td>Power</td>
<td>94</td>
</tr>
<tr>
<td>signal</td>
<td>445</td>
</tr>
<tr>
<td>total average</td>
<td>41</td>
</tr>
<tr>
<td>Power spectral density (see Power spectrum)</td>
<td></td>
</tr>
<tr>
<td>Power spectrum</td>
<td>42-45</td>
</tr>
<tr>
<td>exponential</td>
<td>68,203,308</td>
</tr>
<tr>
<td>Hill spectrum</td>
<td>69-70</td>
</tr>
<tr>
<td>index of refraction</td>
<td>66-71</td>
</tr>
<tr>
<td>Kolmogorov</td>
<td>62,63,67</td>
</tr>
<tr>
<td>modified</td>
<td>68-69</td>
</tr>
<tr>
<td>one-dimensional</td>
<td>46</td>
</tr>
<tr>
<td>Tatarskii</td>
<td>67</td>
</tr>
<tr>
<td>temporal (see Temporal spectrum)</td>
<td></td>
</tr>
<tr>
<td>three-dimensional</td>
<td>47,139</td>
</tr>
<tr>
<td>two-dimensional</td>
<td>47-48,140,148,164</td>
</tr>
<tr>
<td>von Kármán</td>
<td>68</td>
</tr>
<tr>
<td>Principle of reciprocity</td>
<td>271</td>
</tr>
<tr>
<td>Probability density function</td>
<td>154,367</td>
</tr>
<tr>
<td>gamma distribution</td>
<td>368,370,449</td>
</tr>
<tr>
<td>gamma-gamma distribution</td>
<td>370,450,510,691</td>
</tr>
<tr>
<td>gaussian distribution</td>
<td>446-447</td>
</tr>
<tr>
<td>K distribution</td>
<td>368</td>
</tr>
<tr>
<td>lognormal distribution</td>
<td>155-157,451,510</td>
</tr>
<tr>
<td>lognormal-Rician distribution</td>
<td>369</td>
</tr>
<tr>
<td>modified Rician distribution</td>
<td>154-155</td>
</tr>
<tr>
<td>negative exponential distribution</td>
<td>368</td>
</tr>
<tr>
<td>Rayleigh distribution</td>
<td>154</td>
</tr>
<tr>
<td>Rician distribution</td>
<td>175</td>
</tr>
<tr>
<td>uniform distribution</td>
<td>154</td>
</tr>
<tr>
<td>Probability of detection</td>
<td>447,461-462</td>
</tr>
<tr>
<td>fade</td>
<td>445,451-452,462,511,518</td>
</tr>
<tr>
<td>false alarm</td>
<td>445,447,462</td>
</tr>
<tr>
<td>bit error-rate (BER)</td>
<td>446,463,469</td>
</tr>
<tr>
<td>Propagation, ABCD optical system</td>
<td>107-118</td>
</tr>
<tr>
<td>double-pass</td>
<td>117</td>
</tr>
<tr>
<td>Propagation paths, folded</td>
<td>117,543-544</td>
</tr>
<tr>
<td>reciprocal</td>
<td>543-544</td>
</tr>
<tr>
<td>Pulse, arrival time</td>
<td>745</td>
</tr>
<tr>
<td>coherence bandwidth</td>
<td>744</td>
</tr>
<tr>
<td>duty cycle</td>
<td>20,537</td>
</tr>
<tr>
<td>Gaussian</td>
<td>742</td>
</tr>
<tr>
<td>half-width</td>
<td>742</td>
</tr>
<tr>
<td>length</td>
<td>538-539</td>
</tr>
<tr>
<td>narrowband</td>
<td>742</td>
</tr>
<tr>
<td>repetition frequency</td>
<td>20,537</td>
</tr>
<tr>
<td>repetition interval</td>
<td>20,537</td>
</tr>
<tr>
<td>spreading</td>
<td>744</td>
</tr>
<tr>
<td>wideband</td>
<td>742</td>
</tr>
<tr>
<td>Q</td>
<td>Quantum efficiency</td>
</tr>
<tr>
<td>Quasi-frequency</td>
<td>448,456</td>
</tr>
<tr>
<td>R</td>
<td>Radar</td>
</tr>
<tr>
<td>(See also, laser radar)</td>
<td></td>
</tr>
<tr>
<td>Random phase screen (see Phase screen)</td>
<td></td>
</tr>
<tr>
<td>Random process</td>
<td>36</td>
</tr>
<tr>
<td>ergodic</td>
<td>42</td>
</tr>
<tr>
<td>stationary</td>
<td>38</td>
</tr>
<tr>
<td>wide-sense stationary, 39</td>
<td></td>
</tr>
<tr>
<td>with stationary increments</td>
<td>40</td>
</tr>
<tr>
<td>Random field</td>
<td>45-49</td>
</tr>
<tr>
<td>homogeneous</td>
<td>45</td>
</tr>
<tr>
<td>isotropic</td>
<td>46</td>
</tr>
<tr>
<td>locally homogeneous</td>
<td>48</td>
</tr>
<tr>
<td>Range equation</td>
<td>537-538</td>
</tr>
<tr>
<td>Ray matrix (see ABCD ray matrix)</td>
<td></td>
</tr>
<tr>
<td>Rayleigh distribution</td>
<td>154</td>
</tr>
<tr>
<td>range</td>
<td>98</td>
</tr>
<tr>
<td>scattering</td>
<td>11</td>
</tr>
<tr>
<td>Receiver, 22-24</td>
<td></td>
</tr>
<tr>
<td>beam parameters</td>
<td>94-96,99-101</td>
</tr>
<tr>
<td>coherent detection</td>
<td>24</td>
</tr>
<tr>
<td>direct detection</td>
<td>23</td>
</tr>
<tr>
<td>Reciprocal path</td>
<td>543-544</td>
</tr>
<tr>
<td>wave</td>
<td>272</td>
</tr>
<tr>
<td>Reduced wave equation</td>
<td>85</td>
</tr>
<tr>
<td>Reflection parameter</td>
<td>589,696</td>
</tr>
<tr>
<td>Reflector (see Target)</td>
<td></td>
</tr>
<tr>
<td>Refractive index (see Index of refraction)</td>
<td></td>
</tr>
<tr>
<td>Remote sensing</td>
<td>21</td>
</tr>
<tr>
<td>Resolution</td>
<td>116</td>
</tr>
<tr>
<td>long-exposure, 616,619</td>
<td></td>
</tr>
<tr>
<td>maximum</td>
<td>434,619</td>
</tr>
<tr>
<td>Resolved target</td>
<td>535</td>
</tr>
<tr>
<td>Retroreflector, (see Target, retroreflector)</td>
<td></td>
</tr>
<tr>
<td>Reynolds number</td>
<td>59</td>
</tr>
<tr>
<td>Rice-Nakagami distribution (see Rician distribution)</td>
<td></td>
</tr>
<tr>
<td>Rician distribution</td>
<td>175</td>
</tr>
<tr>
<td>Riemann-Stieltjes integral</td>
<td>43,145,164</td>
</tr>
<tr>
<td>Rytov approximation</td>
<td>143-154,183-186,543,649</td>
</tr>
</tbody>
</table>
Index

extended, 159-165, 324-328
first-order, 145-146
second-order, 146-147
spectral representations for, 145-147, 399, 544-545
statistical moments of, 147-150, 401

Rytov variance for,
beam wave, 35
phase screen, 653
plane wave, 140, 189, 263-264
spherical wave, 264

S
Satellite
laser communication system, 17-19, 478-479
orbits, 484-485
Saturation regime, 140, 323
Scattering disk, 161, 325
Scintillation index, 264-265, 336, 340
radial component, 263, 349-350
saturation regime, 140, 323
small-scale, 329
spherical wave, 264, 342-343, 345

Spectrum (See also, Power spectrum),
electromagnetic, 6
temporal (see Temporal spectrum)
Speed of light, 5
Spherical wave, 8, 87
covariance function, 280-281
definition of, 8, 87
double-pass, 552, 565, 572, 576
mutual coherence function, 191
scintillation index, 264, 342-343, 345
structure function, 195-196
Spot size (see Beam radius)
Stationary increments, 40
Stationary random process, 38
wide-sense, 39
Stratosphere, 10-11
Strehl ratio, 407-408, 501, 623
Stochastic process (see Random process)
Strong fluctuations,
definition of, 140, 230
Structure constant,
Hufnagle-Valley model for, 481
index of refraction, 64-65
SLC day model for, 482
SLC night model for, 482
temperature, 63
velocity, 60
Structure function, 40
definition of, 40
index of refraction, 64-71
log-amplitude, 193-194, 196
phase, 193, 195-196
temperature, 62
velocity, 60-61

Slew rate, 481

Soft aperture (see Gaussian aperture)
Source coherence parameter, 671
Spatial
acquisition, 488
coherence radius (see Coherence radius)
diversity, 465
filters, 161-164, 326-328

Speckle
imaging, 609
reflection coefficient, 589, 696
size, 673, 677-678, 697-700
Speckle cells,
number of, 221, 671, 680, 698-700
Spectral representation, 145-147
first-order, 145-146
for ABCD system, 399-400
second-order, 146-147

Speed of light, 5
Spherical wave, 8, 87
covariance function, 280-281
definition of, 8, 87
double-pass, 552, 565, 572, 576
mutual coherence function, 191
scintillation index, 264, 342-343, 345
structure function, 195-196
Spot size (see Beam radius)
Stationary increments, 40
Stationary random process, 38
wide-sense, 39
Stratosphere, 10-11
Strehl ratio, 407-408, 501, 623
Stochastic process (see Random process)
Strong fluctuations,
definition of, 140, 230
Structure constant,
Hufnagle-Valley model for, 481
index of refraction, 64-65
SLC day model for, 482
SLC night model for, 482
temperature, 63
velocity, 60
Structure function, 40
definition of, 40
index of refraction, 64-71
log-amplitude, 193-194, 196
phase, 193, 195-196
temperature, 62
velocity, 60-61

Slew rate, 481

Soft aperture (see Gaussian aperture)
Source coherence parameter, 671
Spatial
acquisition, 488
coherence radius (see Coherence radius)
diversity, 465
filters, 161-164, 326-328

Speckle
imaging, 609
reflection coefficient, 589, 696
size, 673, 677-678, 697-700
Speckle cells,
number of, 221, 671, 680, 698-700
Spectral representation, 145-147
first-order, 145-146
for ABCD system, 399-400
second-order, 146-147

Speed of light, 5
Spherical wave, 8, 87
covariance function, 280-281
definition of, 8, 87
double-pass, 552, 565, 572, 576
mutual coherence function, 191
scintillation index, 264, 342-343, 345
structure function, 195-196
Spot size (see Beam radius)
Stationary increments, 40
Stationary random process, 38
wide-sense, 39
Stratosphere, 10-11
Strehl ratio, 407-408, 501, 623
Stochastic process (see Random process)
Strong fluctuations,
definition of, 140, 230
Structure constant,
Hufnagle-Valley model for, 481
index of refraction, 64-65
SLC day model for, 482
SLC night model for, 482
temperature, 63
velocity, 60
Structure function, 40
definition of, 40
index of refraction, 64-71
log-amplitude, 193-194, 196
phase, 193, 195-196
temperature, 62
velocity, 60-61

Slant paths, 207-210, 299-301
SLC models, 481
day, 482
night, 482

Stochastic process (see Random process)
T
- Target, classification, 539
- Lambert (diffuse), 539, 589
- plane mirror, 545, 553, 558, 563, 566, 569
- point, 575
- retroreflector, 546, 554, 558, 563, 566, 569
- Tatarskii spectrum, 67
- Taylor frozen turbulence hypothesis, 72, 207
- Temperature fluctuations, 62-63
 - inner scale for, 63
 - spectrum for, 63
 - structure constant for, 63
 - structure function for, 62
- Temporal spectrum for
 - field, 207
 - irradiance, 282-288, 365, 421-424
 - phase, 296-298
- Temporal statistics, 72-73
- Thermosphere, 11
- Thin phase screen, 652
- Threshold detection, 445
- Threshold-to-noise ratio (TNR), 448
- Tilt, 272
- Time average, 41-42
- Tracking, 488, 504
- Transceiver, 535
- Transmittance, 12
- Transmitter, 22
- Tropopause, 10
- Troposphere, 10
- Turbulence,
 - atmospheric boundary layer (ABL), 480
 - cascade theory, 59
 - clear-air, 480
 - dissipation range, 59
 - eddy, 59
 - homogeneous and isotropic, 60
 - inertial range, 59
 - inner scale, 59
 - Kolmogorov theory, 58-59
 - phase screen model, 648
 - outer scale, 59
- Two-frequency MCF, 740-742
- Two-thirds law, 60

V
- Variance for
 - angle-of-arrival fluctuations, 200
 - beam jitter, 272, 503
 - beam wander, 201-205
 - log-amplitude fluctuations, 259, 262
 - phase, 289-291
 - pointing error, 273-274, 350
- Velocity fluctuations, 59-60
 - inner scale for, 59
 - spectrum, 62
 - structure constant, 60
 - structure function, 60, 61
- Viscosity, 59
- Visual range, 12
- von Kármán spectrum, 68, 187

W
- Waist (see Beam waist)
- Wander (see Beam wander)
- Wave equation, 84
 - reduced, 85
 - stochastic, 137
- Wave front radius of curvature (see Phase front radius of curvature)
- Wave number, 85
- Wave structure function, 193-199
 - double-pass, 571-572
 - Gaussian-beam wave, 188, 196-199
 - phase screen, 656
 - plane wave, 193-194
 - spherical wave, 195
- Wavelength, 85
- Weak fluctuations,
 - definition of, 140, 230
 - Wide-sense stationary, 39
 - Wiener-Khintchine theorem, 44
 - Wind model, 481

Z
- Zenith angle, 490
- Zernike
 - filter functions, 464, 632-634
 - modes, 464, 631
 - polynomials, 628, 630
- Zero crossings (see Frequency of fade and Number of crossings)
Larry C. Andrews is a professor of mathematics at the University of Central Florida and an associate member of the College of Optics/CREOL. He is also an associate member of the Florida Space Institute (FSI). Previously, he held a faculty position at Tri-State University and was a staff mathematician with the Magnavox Company, antisubmarine warfare (ASW) operation. He received a doctoral degree in theoretical mechanics in 1970 from Michigan State University. Dr. Andrews has been an active researcher in optical wave propagation through random media for more than 25 years and is the author or co-author of ten textbooks on topics of differential equations, boundary value problems, special functions, integral transforms, wave propagation through random media, and mathematical techniques for engineers. Along with wave propagation through random media, his research interests include special functions, random variables, atmospheric turbulence, and signal processing.

Ronald L. Phillips is Director of the Florida Space Institute (FSI) and a professor in the Department of Electrical and Computer Engineering at the University of Central Florida. Dr. Phillips is also a member of the Department of Mathematics and an associate member of the College of Optics/CREOL. He has held positions on the faculties at Arizona State University and the University of California, San Diego. He received a doctoral degree in Electrical Engineering in 1970 from Arizona State University. Dr. Phillips has been an active researcher in wave propagation through random media for more than 28 years. He was awarded a Senior NATO Postdoctoral Fellow in 1977 and the American Society for Engineering Education 1983 Medal for outstanding contributions in research. Dr. Phillips is co-author of two textbooks on wave propagation through random media and mathematical techniques for engineers. In addition to optical wave propagation, his research interests include optical communications and imaging through atmospheric turbulence.