Index

A
abnormal, 161, 178, 180, 189
absolute difference, 438, 454, 469
accuracy, 571, 584, 593, 643, 661, 684
accuracy of pectoral muscle segmentation, 630
accurate processing, 644
acini, 5, 12, 21
active balloon models (ABM), 560
active contour models (ACM), 561, 597, 810, 814
active contours, 276, 730, 735
acutance, 111
adaptability, 644, 661, 675, 681
adaptive, 632
adaptive algorithm, 632
adaptive boosting (AB), 317, 326, 367
adaptive threshold, 162, 165, 172, 177, 383
adequacy, 834, 835
adequacy assessment, 834, 837, 904
adequacy of positioning, 844
advanced data analysis techniques, 928
affine transformation, 436, 492, 510
agents and training methods, 369
algorithm, 705, 719
algorithm performance, 647, 665, 924
alignment of images, 224
alignment of rose diagrams, 222
anatomical imaging, 905
anatomical landmark, 441
ANDIs (aberrations and variations of the normal development and involution), 10, 17
angiogenesis, 53, 62, 741
angle histogram, 210
angular dispersion, 214
angular moments, 214, 221
anisotropic diffusion filtering, 579
arborization, 4, 47
architectural distortion (AD), 211, 215, 221, 925
artificial neural network (ANN), 563, 752, 873, P883
assessment of algorithm performance, 903
asymmetry, 199, 200, 212
autocorrelation coefficients, 573, 596
automatic adequacy assessment, 835
automatic assessment of mammogram adequacy, 835
automatic nipple detection, 711
automatic pectoral muscle segmentation, 614, 636
automatic segmentation, 614, 635
automatically locating the nipple, 702, 720
average intensity gradient, 707, 712
average weighted model (AWM), 271
axillary fold, 634
A_z index performance vs. number of generations, 324
A_z value, 135

B
back projection, 421, 422, 425
basement membrane, 5, 31
Bayes', 848, 855
Bayesian classifier (BC), 820, 824
Bayesian linear classifier, 214
Bayesian regularization, 456
benign, 52, 58, 62, 89, 906, 915, 930
best approximation, 623
beta, 853
BI-RADS, 17, 94, 276, 750, 910
bilateral asymmetry (BA), 200, 223, 925
bilateral mammograms, 441, 446, 471
binary-valued, 138
biomechanical breast model, 434, 459, 464
black box software, 646
block sum pyramid, 458
bootstrap sampling, 878
bootstrap technique, 584
border of the breast, 705
boundary, 380, 383, 385, 405
breast, 848, 864
breast atlas, 934
breast augmentation, 96
breast biopsy, 95
breast border, 837, 844
breast cancer, 2, 28, 46, 558, 566, 571, 600, 724, 792, 903, 925
breast coil, 766
breast composition, 59, 80
breast contour, 648, 672
breast density, 276, 278
breast diseases, 566

963
<table>
<thead>
<tr>
<th>Term</th>
<th>Page Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>breast image database consortium</td>
<td>940</td>
</tr>
<tr>
<td>breast image registration</td>
<td>433, 440</td>
</tr>
<tr>
<td>breast imaging</td>
<td>276</td>
</tr>
<tr>
<td>breast imaging CAD</td>
<td>918, 929</td>
</tr>
<tr>
<td>breast lesion</td>
<td>764, 769, 774</td>
</tr>
<tr>
<td>breast lobe</td>
<td>3, 28, 44</td>
</tr>
<tr>
<td>breast MRI</td>
<td>766, 783, 792, 793, 798</td>
</tr>
<tr>
<td>breast phantom</td>
<td>467</td>
</tr>
<tr>
<td>breast region segmentation</td>
<td>647, 660</td>
</tr>
<tr>
<td>breast specific lexicon</td>
<td>78</td>
</tr>
<tr>
<td>breast ultrasound (US)</td>
<td>558, 572, 577, 590, 905, 911</td>
</tr>
<tr>
<td>breast-specific partial parallel imaging</td>
<td>86</td>
</tr>
<tr>
<td>C-b spline</td>
<td>451, 454</td>
</tr>
<tr>
<td>Burg algorithm</td>
<td>298</td>
</tr>
</tbody>
</table>

C

<table>
<thead>
<tr>
<th>Term</th>
<th>Page Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAD algorithms</td>
<td>906, 929</td>
</tr>
<tr>
<td>CAD performance</td>
<td>909, 937</td>
</tr>
<tr>
<td>CAD prompting</td>
<td>939</td>
</tr>
<tr>
<td>cancer</td>
<td>52, 59, 70, 101, 848, 864</td>
</tr>
<tr>
<td>carcinoma</td>
<td>764, 771</td>
</tr>
<tr>
<td>carcinoma in situ</td>
<td>21, 29, 44</td>
</tr>
<tr>
<td>cascading failure</td>
<td>647</td>
</tr>
<tr>
<td>case studies</td>
<td>120, 530</td>
</tr>
<tr>
<td>case-based reasoning</td>
<td>876</td>
</tr>
<tr>
<td>Cauchy distribution</td>
<td>319</td>
</tr>
<tr>
<td>Cauchy-Navier spline</td>
<td>446</td>
</tr>
<tr>
<td>cellular</td>
<td>905, 942</td>
</tr>
<tr>
<td>characterization</td>
<td>872</td>
</tr>
<tr>
<td>chest-wall segmentation</td>
<td>803</td>
</tr>
<tr>
<td>chromosome</td>
<td>138, 151</td>
</tr>
<tr>
<td>circular variance</td>
<td>222</td>
</tr>
<tr>
<td>circularity</td>
<td>562</td>
</tr>
<tr>
<td>circumscribed</td>
<td>907, 924</td>
</tr>
<tr>
<td>CIRS, 468, 469</td>
<td></td>
</tr>
<tr>
<td>classification</td>
<td>230, 232, 240, 577, 582, 607, 765, 792, 819, 827, 903, 928</td>
</tr>
<tr>
<td>classification methodology</td>
<td>753</td>
</tr>
<tr>
<td>classification of microcalcifications</td>
<td>295</td>
</tr>
<tr>
<td>classifier</td>
<td>130, 134, 141, 142, 148, 230, 234, 237, 252, 253</td>
</tr>
<tr>
<td>classifier combination</td>
<td>265, 271</td>
</tr>
<tr>
<td>cliff</td>
<td>616, 624</td>
</tr>
<tr>
<td>cliff detection</td>
<td>616, 624, 635</td>
</tr>
<tr>
<td>cliff location</td>
<td>625</td>
</tr>
<tr>
<td>clinical acceptance</td>
<td>880, 886, 890</td>
</tr>
<tr>
<td>clinical evaluation</td>
<td>937</td>
</tr>
<tr>
<td>cluster</td>
<td>724, 731</td>
</tr>
<tr>
<td>cluster selection</td>
<td>175</td>
</tr>
<tr>
<td>clustering</td>
<td>160, 161, 167</td>
</tr>
<tr>
<td>combination of experts</td>
<td>265, 269, 271, 283, 935</td>
</tr>
<tr>
<td>commercial breast CAD system</td>
<td>935</td>
</tr>
<tr>
<td>compactness</td>
<td>727</td>
</tr>
<tr>
<td>completeness</td>
<td>652, 653, 665</td>
</tr>
<tr>
<td>complicated EP-generated network with</td>
<td>336</td>
</tr>
<tr>
<td>hidden nodes</td>
<td></td>
</tr>
<tr>
<td>computed tomography (CT)</td>
<td>430, 435, 461</td>
</tr>
<tr>
<td>computer aided diagnosis (CAD) tool</td>
<td>292, 293, 296, 308</td>
</tr>
<tr>
<td>computer-aided</td>
<td>851</td>
</tr>
<tr>
<td>computer-aided characterization (CAC)</td>
<td>872</td>
</tr>
<tr>
<td>computer-aided detection (CADe)</td>
<td>264, 410, 640, 645, 667, 670, 683, 744, 745, 754</td>
</tr>
<tr>
<td>computer-aided diagnosis (CAD)</td>
<td>110, 117, 410, 445, 470, 532, 560, 565, 851, 862, 866, 873</td>
</tr>
<tr>
<td>computer-aided diagnosis (CAD) system</td>
<td>571, 572, 588, 792, 820</td>
</tr>
<tr>
<td>computer-aided diagnosis (CADx)</td>
<td>110, 117, 530, 558, 744, 745, 754, 872, 873, 903, 935</td>
</tr>
<tr>
<td>computer-assisted surgery</td>
<td>934</td>
</tr>
<tr>
<td>computerized analysis</td>
<td>641, 650</td>
</tr>
<tr>
<td>computerized mass detection</td>
<td>412</td>
</tr>
<tr>
<td>concave deviations</td>
<td>622</td>
</tr>
<tr>
<td>confidence term</td>
<td>231</td>
</tr>
<tr>
<td>confusion tables</td>
<td>499, 501</td>
</tr>
<tr>
<td>connected-component analysis (CCA)</td>
<td>385</td>
</tr>
<tr>
<td>constraint</td>
<td>381, 392, 405</td>
</tr>
<tr>
<td>content-based image retrieval (CBIR)</td>
<td>112, 535, 539, 552, 876, 890</td>
</tr>
<tr>
<td>content-based query</td>
<td>114, 117, 536</td>
</tr>
<tr>
<td>content-based retrieval</td>
<td>111, 530</td>
</tr>
<tr>
<td>contralateral registration</td>
<td>488, 513</td>
</tr>
<tr>
<td>contrast</td>
<td>292, 304</td>
</tr>
<tr>
<td>contrast agent</td>
<td>53, 62, 741, 754, 815</td>
</tr>
<tr>
<td>contrast enhancement</td>
<td>648, 655, 675</td>
</tr>
<tr>
<td>contrast-enhanced</td>
<td>433, 447, 451</td>
</tr>
<tr>
<td>control point</td>
<td>435, 437, 442</td>
</tr>
<tr>
<td>control-point selection</td>
<td>920</td>
</tr>
<tr>
<td>convex</td>
<td>836, 840</td>
</tr>
<tr>
<td>convolution integral</td>
<td>413</td>
</tr>
<tr>
<td>Cooper’s ligaments</td>
<td>3</td>
</tr>
<tr>
<td>coregistration</td>
<td>910, 915</td>
</tr>
<tr>
<td>correct positioning</td>
<td>834</td>
</tr>
<tr>
<td>correctness</td>
<td>652, 653, 665</td>
</tr>
<tr>
<td>correlation</td>
<td>303, 304</td>
</tr>
<tr>
<td>correlation ratio (CR)</td>
<td>438</td>
</tr>
<tr>
<td>covariance matrices</td>
<td>206, 214</td>
</tr>
<tr>
<td>co-occurrence matrix</td>
<td>572</td>
</tr>
<tr>
<td>cranio-caudal (CC) view</td>
<td>702, 709, 834</td>
</tr>
<tr>
<td>criterion</td>
<td>836, 843</td>
</tr>
<tr>
<td>cross correlation (CC)</td>
<td>438</td>
</tr>
<tr>
<td>cross-validation</td>
<td>274, 276, 278, 752, 881</td>
</tr>
<tr>
<td>crossover</td>
<td>132, 137, 140, 150</td>
</tr>
<tr>
<td>curse of dimensionality</td>
<td>134, 880, 882</td>
</tr>
<tr>
<td>curvature</td>
<td>382, 385, 392</td>
</tr>
<tr>
<td>curve refinement</td>
<td>615, 627, 632</td>
</tr>
<tr>
<td>curved boundary</td>
<td>615</td>
</tr>
<tr>
<td>cyst</td>
<td>11, 21</td>
</tr>
</tbody>
</table>
D

data mining, 588
data partition, 168
data sampling, 882
data-definition functions, 539
database, 904, 908, 940
database management, 112
database of mammograms, 111, 120, 531
database size, 882, 885
decision, 848, 866
decision tree, 588
defformable model, 380, 402
dense mammograms, 906
density estimation, 168
density quantification, 903
density screening, 924
density variance, 562
dependency, 381, 388, 392, 401
dependency approach extrapolation, 391
depth parameter, 710
depth-to-width ratio, 562
derivative filter, 709
design phase, 321, 323
detected curve, 617, 626
detection, 160, 161, 175, 177, 189, 230, 237,
238, 244, 848, 852
computer-aided, 876
detection of abnormalities, 513
detection of microcalcifications, 293, 295,
297, 304, 306
deterministic annealing (DA), 168, 171, 185
diagnosis, 740, 748
computer-aided, 873
diagnostic, 857, 862
diagnostic aids, 724
differentiator, 707
diffusion, 55, 99
digital breast tomosynthesis (DBT), 410, 905,
908
Digital Database for Screening Mammography (DDSM), 276, 278, 281, 285, 754
digital mammography, 410, 417, 432, 458,
462
directional analysis, 205
directional components, 199, 205
directional filtering, 198
discontinuity measure, 383
discrimination, 736
distance matrix, 510, 520
distributions, 851, 854
dominant orientation, 215, 222
duct neogenesis, 26
ductal carcinoma in situ (DCIS), 57, 61
ductal structure, 382
ducts, 3, 58
lactiferous, 4
segmental, 4
subsegmental, 4
terminal, 4
dynamic contrast enhancement imaging, 52
dynamic contrast-enhanced (DCE), 741, 747
dynamic programming, 804, 808
dynamic range, 298, 304, 731
E

e-learning, 530
early breast cancer, 924
eccentricity, 222
economics, 849
dge detection, 724
dge sharpness, 114
eigenvalues, 206, 207, 215
elastic transformation, 437
elastic-body spline (EBS), 438, 448, 493,
501, 520
elasticity, 730
elastogram, 912
elastography, 55, 96
electrical impedance scanning (EIS), 915,
918
EM algorithm, 267, 272
emerging breast technologies, 96
empirical risk, 233
energy, 730
energy minimization problem, 560
enhancement, 293, 294, 307, 379, 724
enhancement curve, 741, 749
enhancement kinetics, 818
enhancement rate, 751
ensemble, 242, 251
ensemble-based combination rules, 270
entropy, 213, 303
EP process which evolves both neural
network parameters and architecture(s), 332
EP-derived support vector machines (SVMs), 338
EP/AB hybrid, 330, 345, 367
epithelial cells, 5, 20
error computation, 395
errors, 852
estimated skin-line boundary, 398
Euclidean distance, 396, 401, 470
Euler-Lagrange, 730
evaluation of image registration, 498
evaluation protocol, 649
evolutionary, 132, 136
evolutionary programming (EP), 318, 326,
332, 334
evolutionary strategies (ES), 318
exhaustive search, 440
exhaustive testing, 661, 678
exploitation, 137
exploration, 137

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 06 Nov 2019
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use
extent of the disease, 28
breast carcinoma of limited extent, 37
extensive breast carcinomas, 37
extensive in situ component, 37
external feature, 436, 441
external force, 730

F
failure assessment, 666, 679
false negative, 292, 306, 862
false positive, 306, 736, 862
false positive fraction (FPF), 937
false-positive reduction (FPR), 162, 172, 245, 249
fan-shaped region, 445
fat saturation, 52, 61
FDA, 744
FDA approval, 935
feature, 134
feature extraction, 199, 201, 230, 245, 294, 296, 302, 308, 501, 504, 509, 749, 903, 923
feature space, 161, 164, 179, 182, 183, 185, 186, 434, 435
feature vectors, 114
feature-based registration, 440, 441, 446, 448, 454
featureless, 240, 245
feedback tool, 835
FFDMUS, 472
fibroadenomas, 10, 34
fibroglandular disc, 199, 211, 222, 920
fibroma, 54, 57
field of view (FOV), 460
finite difference, 731
finite element methods (FEM), 465, 470
finite mixture model (FMM), 266
fitness, 132, 136, 142
fitted stroma edge, 392, 393
five-fold cross validation (XVAL), 304
floating image, 438, 457
free-form deformation (FFD), 451, 921
full-field digital mammography (FFDM), 432, 462, 905, 936
functional imaging, 741, 916
functional magnetic resonance imaging (fMRI), 905
future challenges, 918, 934
future of breast imaging CAD, 942
fuzzy C mean (FCM), 775
fuzzy c-means clustering, 793
fuzzy clustering, 765, 784

G
GA parameter, 137, 141
Gabor filters, 198, 201, 203, 215
Gabor functions, 198, 199
Gabor wavelets, 198, 200, 202, 204, 205
gadolinium, 741
gadolinium chelates, 71
gain-adaptive contrast enhancement (GACE), 162, 165
gamma distribution, 726
Gaussian distribution, 303, 304
Gaussian mixture model, 748
Gaussian random, 854
Gd-DPTA, 764
generalized regression neural network (GRNN) oracle, 350
generation, 132, 136, 139, 145
genetic algorithms (GA), 131, 136, 881, 928
genetic predisposition to cancer, 56
geometric features, 836
global maximum, 707, 712
global minimum, 707, 712
global transformation, 747
gradient, 724, 735
gradient test, 618, 621
gradient vector flow, 599
graphical user interface (GUI), 531, 551, 766
greedy algorithm, 380, 387
greedy range selection, 380, 387
ground truth (GT), 381, 394, 646, 662, 753, 918, 938
ground-truth evaluation, 661
H
Hausdorff distance measure (HDM), 381, 400
hierarchical neural network (HNN), 584
hierarchical technique, 440
histogram of mammogram, 383
histology, 60, 906, 918
histopathology, 2
hormone replacement therapy (HRT), 19
Hough transform, 803
human readers, 826
Hu’s moments, 222
hyperplane, 232, 248, 254
I
image adequacy, 834
image databases, 661, 667
image fusion, 754, 904, 922
image mapping, 766, 773
image processing, 915, 930
image processing algorithms, 931
image quality, 834
image registration, 488, 501, 524, 745, 903, 920
INDEX 967

image segmentation, 264, 269, 274, 285, 903, 934
image subtraction, 469, 765, 771
immunohistochemical staining
 E-cadherin, 43
in-depth resolution, 417
incompressibility, 747
independent component analysis (ICA), 456
indexed atlas, 111, 112, 114, 118, 121, 530
inframammary fold, 836, 841
initial portion of skin line, 380, 387
initial testing, 672
initialization, 4, 26, 47, 137
inner stroma edge estimation, 388
input space, 181, 186
intensity enhancement, 741
intensity gradient, 704
intensity profile, 616, 625, 719
intensity transformation, 434
intensity-based registration, 445, 454
intermodality, 434, 440
intermodality registration, 922
interobserver variability, 743
internal energy, 560
internal feature, 436, 441
inertumoral heterogeneity, 39, 46
intracystic papillary lesions, 34
intramodality, 434, 440, 471
intramodality registration, 922
intraregister variability, 743
involution, 8, 61, 87
 fatty involution, 8
 fibrous involution, 8
 parenchymal involution, 8
isointensity contours, 703
iterative cliff detection, 616, 624, 632
iterative refinement, 627
iterative solution, 747
iterative threshold selection, 618, 619, 632

J
Jacobian determinant, 452

K
k (or 5-fold) cross validation, 319
k-fold cross-validation, 883, 884
k-fold cross-validation method, 583
k-mean, 748, 777
Karhunen-Loève (KL) transform, 199, 206
KDBA, 188
kernel, 178, 179, 182, 185, 186, 231, 237, 243, 259, 305
kernel-based deterministic annealing (KBDA), 182, 186, 188
KL transform, 207, 213, 215, 224
knowledge engineering (KE), 318, 369, 370
knowledge representation (KR), 112, 370, 551
Kohonen network model, 450
kurtosis, 300

L
lactation, 8, 20
landmark, 614, 702, 838
Laplace distribution, 726
large-section, 2
learning, 231, 232, 239, 253
learning algorithms, 929
learning phase, 192
least-squared error, 622, 625, 706
least-squares matching, 443
leave-one-out method, 214, 221, 223
leave-one-out sampling, 884
lesion characterization, 764, 769
lesion classification, 751
lesion detection, 903, 924
lesion distribution, 35
 diffuse, 35
 multifocal, 35
 unifocal, 35
lesion segmentation, 560, 748
level-set segmentation, 579
likelihood ratio classifier, 883, 886
line operator, 502, 506
line processing, 503, 506
linear, 230, 235, 238, 247, 252
linear combination of unbiased estimators, 350
linear discriminant analysis (LDA), 563, 752, 875, 882
linear model, 875
linear prediction error, 297
linear structure, 436, 444, 459, 488, 501, 507, 508
live-wire, 765, 775, 779
lobularization, 4, 21, 47
lobules, 4, 21, 31, 58
local correlation, 438, 453
local deformations, 747
local maximum, 708, 714
local minimum, 714
localize the pectoral margin, 628
lookup table, 434

M
machine learning, 231, 237, 245
magnetic resonance imaging (MRI), 52, 59, 61, 63, 72, 75, 82, 430, 740, 433, 435, 447, 456, 459, 747, 754
magnetic resonance spectroscopy (MRS), 55, 67, 96
Mahalanobis transformation(s), 362
malignancy, 764
malignant, 55, 59, 88, 160, 165, 170, 176, 915, 930
mammalian visual system, 198, 205
mammogram, 430, 441, 447, 466, 702, 704, 714, 724, 732
mammogram adequacy, 835
mammogram calcification findings, 319, 334, 368
mammogram enhancement, 649, 657, 685
mammogram mass findings, 334, 368
mammogram quality, 834
mammographic, 160, 162, 172, 189
mammographic features, 501
Mammographic Image Analysis Society (MIAS), 444, 754
mammographic miscellaneous findings, 334, 368
mammographic patterns, 19
mammography screening, 558
mammotome, 597
Markov random field (MRF), 265, 266, 726, 765, 779
Markov random field (MRF) model, 824
mass, 160, 161, 164, 172, 175, 177, 183, 188, 189, 641, 662, 684
mass classification, 562
mass detection, 277, 558, 910, 924
mass-lesion detection, 924
master-slave, 150
matching errors, 516
maximization, 168
maximum derivative, 765, 774
maximum likelihood (ML), 267, 272
maximum-intensity projection (MIP), 414, 451, 774
maximum-likelihood expectation maximization (ML-EM) reconstruction, 411
McNemar test, 629
mean, 764, 766, 775
mean error, 402
measuring interinstitutional generalization capability, 348
medical image registration, 433, 439
mediolateral oblique (MLO) view, 836
mediolateral oblique (MLO) view mammograms, 614, 636
menstrual cycle, 6
MIAS database, 380, 388, 402, 616, 633, 702, 708, 836
microcalcifications, 11, 292, 296, 297, 302, 642, 656, 724, 731, 903, 922
amorphous, 26, 34
casting type microcalcifications, 12, 24
powdery microcalcifications, 22
psammoma body-like microcalcifications, 12
minimal spanning tree, 456
minimax, 160, 177
minimization, 168, 170, 178
mixture of experts (MOE) framework, 272
MLO mammogram, 615, 633
mobile agents, 119
models, 848, 866
modular artificial intelligence (MAI) system design, 318, 367
molecular, 905, 913
molecular imaging, 96, 913
morphological cleaning, 384
morphological feature, 223, 743, 879
morphological filtering, 725
morphology, 803, 809
motion artifacts, 745
moving-window average filter, 627
MR (3D) correspondence, 523
MR breast perfusion system (MR-BPS), 764, 784
MR physics, 64
MR radiographically dense breast, 53
multispectral imagery, 905
multilayer feed-forward neural network, 583, 594
multilayer perceptron (MLP), 231, 238, 242
multilevel, 496, 511, 524
multimodality, 434, 439, 458, 466
multiobjective GA, 141
multireader multicase (MRMC) analysis, 826
multiresolution, 440, 443, 446, 726, 921, 934
multiresolution analysis, 198, 205
multiscale, 245, 251, 934
multiscale analysis, 199
mutation, 132, 137, 150
mutation process, 317, 341
mutual information, 160, 165, 170, 177
mutual information (MI), 438, 439, 493, 494, 510
myoepithelial cells, 5
N
negative predictive value, 584, 587
neural network (NN), 141, 146, 230, 237, 285, 295, 305, 582, 583, 607, 792, 821
Newton-Raphson method, 440, 450
nipple, 380, 395, 405, 435, 442, 448, 702, 718, 920
nipple detection, 703, 708
nipple in profile, 703, 712, 842
nipple is not in profile, 704, 707, 714
nipple position, 837
nipple window, 708
nonexclusion of breast tissue, 839, 841
nonlinear, 232, 235, 258
nonlinear model, 875
nonlinear registration, 492
nonrigid, 920
nonrigid registration, 451, 453, 746
normal to the skin-air interface, 704
normalization factor, 774
normalized distance, 510
normalized mutual information (NMI), 438, 439
number of boosting rounds, 328

O

object process diagram, 382
oblique-view, 702, 714
observer study, 499, 501
Ojala threshold, 383
one-class SVM, 180, 190
ontology, 531, 545, 551
ontology Web language (OWL), 531
optic-flow registration, 451
optical flow model, 746
optical imaging, 905, 914
optimal compression, 834
optimal threshold, 207
optimization, 133, 141, 234, 256, 259, 440, 445, 473
optimization phase, 321, 323
oriented patterns, 200
Otsu threshold, 388
Otsu's method of thresholding, 207, 215
outlier estimation, 172
overfitting, 233, 242, 258

P

parallel GA, 141, 150
parallel imaging, 86
parameters, 131, 133, 137
parameters optimization, 133, 141
parenchyma, 924
partial area under curve, 877, 888
partial least squares (PLS) and kernel-PLS (K-PLS), 357
partial ROC area, 152
patient history, 111, 113, 118, 121
patient history variables, 320, 342
patient positioning, 614, 838
pattern analysis, 161, 178, 192
pattern classification, 214
pattern of intensities, 719
pectoral boundary, 615, 634
pectoral margin, 615, 625, 836, 920
pectoral muscle, 614, 623, 647, 653, 836
pectoral muscle segmentation, 614, 636
pectoral triangle, 617, 628
perceptron dominated best performers, 336
performance evaluation, 381, 396, 645, 661, 683, 930
performance indicators, 649, 661, 662
performance metrics, 647, 653, 664, 665
perfusion, 100
peripheral fatty area, 381, 388
phantom, 469
pharmacokinetic model, 746, 819
physiological imaging, 905
physiological model, 741
PLS and K-PLS regression, 358
point correspondence, 496, 508
point of inflection, 625
point-based, 490, 491, 508, 520
polyline distance, 381, 396, 399
polyline distance measure (PDM), 381, 396
polynomial mapping, 437
positioning, 834
positioning assessment, 834
positioning quality, 844
positive predictive value (PPV), 307, 584, 587
positron emission mammography (PEM), 460
positron emission tomography (PET), 430, 435, 462, 905, 915
postcontrast, 764, 784
posterior nipple line, 842
PostgreSQL, 531, 536, 552
precontrast, 764, 782
prediction, 752
predictive, 855, 862, 867
principal axes, 445, 453
principal component analysis (PCA), 223, 285
principal components, 206, 215
prior mammograms, 926
probabilistic neural network (PNN), 318, 350
probability, 266, 269, 273, 848, 866
probability density function, 271
projection, 410
proof of concept testing, 673
prospective, 939
purpose of segmentation, 628

Q

quadratic programming (QP), 234, 252, 257
quality, 834
quality assurance, 834, 903
quality assurance program, 835
quantitative descriptors, 117

R

r² and “press” R² values, 366
radial basis function, 437
radial gradient filter, 412
radial scar, 26, 33
radial gradient index (RGI), 417
radiologists, 849, 866
radiology, 918, 940
radiopaque artifacts, 648, 666, 675
radiotracer uptake, 916
raised-cosine smoothing filter, 709
random, 851
random color map, 704
real-valued, 131, 138, 151
receiver operating characteristic (ROC), 276, 286, 736, 876, 884, 888
receiver operating characteristic (ROC) curve, 142, 148, 153, 320, 344, 753
receptive field profile, 198
reconstruction, 410
reconstruction algorithms, 909
reconstruction artifact, 425
reference image, 438, 456, 457
reference line, 728
reference pixel, 728
region growing, 725, 727, 793, 796
region of interest (ROI), 162, 163, 175, 178, 188, 264, 447, 467
region segmentation, 560
regional registration, 444
registration using linear structures, 508
regression models based on direct kernels, 358
regularization parameter, 243, 258
regulatory acceptance, 886
relational database management system (RDBMS), 533
relaxation (T_1, T_2), 67
relaxation time, 740
reliability, 661, 669
reliability measure, 708, 720
remote consultation, 121
repeat examination, 835, 844
repeat visit, 835
replacement, 132, 136, 143, 150
reprojection, 421, 423
resource description framework (RDF), 550
retrospective, 939
rigid transformation, 436
rigidity, 730
rms error, 719, 720
robust against artifacts, 633
robust information clustering (RIC), 160, 161, 171, 175, 178
robustness, 644, 661, 682, 903, 922
ROC analysis, 937
ROC curve analysis, 584, 826
ROI adjustment, 616, 623
ROI shrinking, 617, 623
rose diagrams, 210, 212, 219, 223
roulette-wheel, 139, 145
round-robin sampling, 884
rule-based classification, 563
S
salient points, 497, 507, 518
sampling, 875
 bootstrap, 878
data, 883
 leave one out, 883
 round robin, 883
scintimammography, 916
Screen Test, 305
screening, 292, 307, 558, 740, 754, 848, 868
search paths, 618, 624
search space, 434, 440
search strategy, 435, 440
seed pixel, 724, 729
segmented pectoral muscle, 624
selection, 134
self-organizing map, 585
semiautomated, 752
semiautomatic, 161, 178, 192
sensitivity, 133, 141, 143, 221, 223, 227, 277, 278, 281, 284, 307, 308, 571, 584, 587, 640, 662, 685, 743, 751, 792, 826, 862, 872, 877, 887, 910, 922
sensitivity experiments, 321, 330
sequential backward selection (SBS), 303, 304
sequential forward selection (SFS), 303, 304
Shannon entropy, 186
shape analysis, 116
shape smoothness, 385
shape-based features, 577, 815, 816
sharp intersection, 390
shift-and-add reconstruction, 410
sigmoid function, 625
signal, 848, 852
similarity measure, 435, 438, 490, 493, 519, 747
similarity operators, 539, 543
simplex, 442, 445, 455
sine filter, 709
single photon emission computed tomography (SPECT), 915
skewness, 300
skin boundary, 414, 436
skin detection, 798
skin line, 379, 381, 385, 395, 405
skin-air boundary, 705
skin-air interface, 702, 704
slack variables, 235, 258
slope, 766, 774
smoothing filter, 707, 710
Sobel operator, 731, 735
software agents, 111, 119
solid masses, 560
spatial frequency domain, 413
spatial resolution, 731
spatial sequence, 767
spatial transformation, 434
specificity, 133, 143, 221, 307, 308, 571, 584, 587, 743, 751, 792, 826, 862, 877, 887, 922
specificity and positive predictive values (PPV) at different specificities, 330
speckle, 574, 591
speckle tracking, 433, 457
sphere, 181, 190
spiculated, 907
spiculation, 590, 600
spline, 747
spline fitted boundary, 385
spline fitting, 381, 392
SQL (Structured Query Language), 535, 552
standard deviation, 764, 769
standard deviation of the mean error, 402
standards, 753
statistical evaluation, 657, 661
statistical features, 295
statistical learning theory (SLT), 230, 231, 235, 255
steep slope, 765, 774
stereotactic positioning, 95
stick, 579, 597, 604
stochastic, 848
stopping criterion, 140, 147
straight-line approximation, 615, 622
straight-line estimation, 616, 618, 622
straight-line fitting, 618, 622
straight-line validation, 622
stretch parameter, 222
stroma, 8, 16, 26
stroma edge, 381, 388
structural imaging, 905
structural risk minimization (SRM), 304
structural risk versus empirical risk, 339
subband, 725
subtle signs, 924
sum of squared difference (SSD), 438, 454
supervised segmentation, 265
support vector machine (SVM), 161, 178, 180, 230, 231, 237, 238, 240, 243, 293, 303, 587, 820, 822, 929
support vectors (SV), 231, 232, 246, 256
surface rendering, 563
surgery and therapy planning, 904
SVMs and sequential minimum optimization (SMO), 339
T
T_1-weighted image, 741
T_2-weighted image, 741
tail weight, 300
tangent, 706, 712
target, 435, 438, 451
teaching system, 121, 544
template, 435, 438, 442
temporal mammograms, 441, 443, 471, 490, 512, 517
temporal MR registration, 518, 523
temporal resolution, 819
terminal ductal-lobular unit (TDLU), 4
testing, 903, 918
test model, 884, 889
testing CADe, 644
testing protocol, 643, 661
testing regime, 661
text, 436, 442, 444
textual transformation, 444
texture, 111, 114, 117, 160, 180, 189
texture edges, 614, 634
texture feature, 280, 285, 879
texture-based features, 572, 815, 817
thick sections, 2
thin-plate splines (TPS), 437, 443, 446, 492, 500, 508
three-dimensional breast volume, 412
three-dimensional MRI, 438, 447, 466
three-dimensional ultrasound, 591
three-dimensional breast ultrasound, 563, 591
three-dimensional reconstruction, 740, 903, 904
threshold, 724, 736, 848, 855
threshold segmentation, 748
thresholding, 215, 579, 603, 724, 725, 793, 809
thresholding of mammograms, 380
time/intensity curve, 815, 817
tissue depth, 842
tissue inclusion, 834
tomosynthesis, 433, 435, 462
top-hat filter, 414
tournament selection process (with and without replacement), 318, 330
tracking of linear structures, 488, 515
tracking of regions, 514
training, 231, 238, 248, 909, 928
model, 884, 889
training and validation data sets, 322
true negative, 306
true positive, 306, 307
true positive fraction (TPF), 937
true positives, 736
tumor, 53, 62, 69, 81, 911
tumor detection, 775, 777
tumor mass, 33
circular, 33
spiculated, 33
two-dimensional projection, 447, 459, 464, 904

U

UCSF/LLNL database, 702, 714
ultrasound, 430, 435, 454, 456, 462, 558
unsharp masking, 725
unsupervised segmentation, 265
uptake curve estimation, 764, 772
user interaction, 748
user interface, 531, 544

V

validation, 434, 442, 465, 467, 903, 931
criterion, 622, 634
model, 884, 889
Vapnik, 231
variance, 206, 214
vascular flow, 62, 65
velocity mapping, 773
verification, 931
vicinal kernel, 178, 183
vicinal risk minimization (VRM), 178, 182
vicinal support vector machine (VSVM), 161, 180, 182, 185, 239
visual assessment, 651, 661, 672
visual inspection, 470
visualization, 558, 563
volume of mass, 562
volume rendering, 563
volume-preserving, 449, 452

W

washout, 765, 774
wavelet decomposition, 726
wavelet expansion, 726
wavelet representation, 201
wavelet transform, 575, 725
wavelets, 200, 204, 207, 210, 280, 285, 725
weak learner, 326, 330
Web-based systems, 531
weighted Euclidean distance, 351, 354
weighted Gaussian mixture model (WGMM), 265, 270, 277
weighted Gaussian mixture models, 285
whole-breast scanning, 558
Woods’ criteria, 438
workflow of radiologists, 115

X

XML (extensible markup language), 531

Y

Yule-Walker equations, 298
Dr. Jasjit Suri has spent over 20 years in imaging sciences and his last 14 years has been dedicated to the field of medical imaging modalities and its fusion. He has published more than 135 technical papers in body imaging that relate to modalities like MR, CT, X-ray, PET, SPECT, elastography, and molecular imaging. While working more than one decade in industries such as Siemens Research, Philips Research, and Fischer Research Divisions in the capacity of Scientist and Senior Director of Research and Development, Dr. Suri submitted more than 15 U.S. patents, covering the area of medical imaging modalities. Dr. Suri has also written seven collaborative books (with two more being finalized) in the area of body imaging (such as cardiology, neurology, pathology, mammography, angiography, atherosclerosis/plaque imaging, and molecular imaging) covering medical image segmentation, image and volume registration, and physics of medical imaging modalities and emerging applications of medical imaging technologies.

He is a lifetime member of research engineering societies: Tau-Beta-Pi, Eta-Kappa-Nu, Sigma-Xi and is a member of NY Academy of Sciences (NYAS), Engineering in Medicine and Biology Society (EMBS), American Association of Physics in Medicine (AAPM), SPIE, ACM, and is also a Senior Member of IEEE. He is on the editorial board and is a reviewer of several international journals such as: Real Time Imaging (RTI), Pattern Analysis and Applications (PAA), Engineering in Medicine and Biology Magazine (EMBS), Radiology, Journal of Computer Assisted Tomography, IEEE Transactions of Information Technology in Biomedicine and is on the IASTED Imaging board. He has also chaired biomedical imaging tracks at several international conferences and has given more than 40 international presentations and seminars. Dr. Suri has been listed in Who's Who 9 times and is a recipient of President's Gold medal in 1980. He has received more than 50 scholarly and extra-curricular awards during his career. He is also a Fellow of American Institute of Medical and Biological Engineering (AIMBE) and ABI. He is Visiting Faculty at several schools such as Department of Computer Sciences, University of Exeter, Exeter, UK, Department of Computer Sciences; University of Barcelona, Spain; and Director of Medical Imaging Division, Jebra Wellness Technologies.

Dr. Suri received his B.S. in Computer Engineering with distinction from Maulana Azad College of Technology, Bhopal, India; his M.S. in Computer Sciences (in conjunction with the Neurology Division, School of Medicine) from University of Illinois, Chicago; his Ph.D. in Electrical Engineering (in conjunction with the Cardiology Division, School of Medicine) from University of Washington, Seattle; and his MBA from Weatherhead School of Management (in conjunction with the Department of Biomedical Engineering), Case Western Reserve University, Cleveland. His major interests are in the field of biomedical imaging (from pixel to molecule to fusion) and biomedical devices and image guided surgeries, computer vision, graphics and bio-imaging, software engineering, and biophysics for better healthcare design, delivery, and therapy.
Dr. Rangaraj Mandayam Rangayyan was born in Mysore, Karnataka, India, on 21 July, 1955. He received his Bachelor of Engineering degree in Electronics and Communication in 1976 from the University of Mysore at the People’s Education Society College of Engineering, Mandya, Karnataka, India, and his Ph.D. degree in Electrical Engineering from the Indian Institute of Science, Bangalore, Karnataka, India, in 1980. He was with the University of Manitoba, Winnipeg, Manitoba, Canada, from 1981 to 1984. Dr. Rangayyan is currently a Professor with the Department of Electrical and Computer Engineering, and an Adjunct Professor of Surgery and Radiology, at the University of Calgary, Calgary, Alberta, Canada. His research interests are in the areas of digital signal and image processing, biomedical signal analysis, medical imaging and image analysis, and computer vision. His current research projects are on mammographic-image enhancement and analysis for computer-aided diagnosis of breast cancer; region-based image processing; knee-joint vibration signal analysis for noninvasive diagnosis of articular cartilage pathology; and analysis of textured images by cepstral filtering and sonification. He has lectured extensively worldwide and has collaborated with many research groups in Brazil, Spain, France, and Romania.

Dr. Rangayyan was Associate Editor of the *IEEE Transactions on Biomedical Engineering* from 1989 to 1996; the Program Chair and Editor of the Proceedings of the *IEEE Western Canada Exhibition and Conference on Telecommunication for Health Care: Telemetry, Teleradiology, and Telemedicine*, July 1990, Calgary, Alberta, Canada; Canadian Regional Representative to the Administrative Committee of the IEEE Engineering in Medicine and Biology Society (EMBS), 1990-93; a Member of the Scientific Program Committee and Editorial Board, International Symposium on Computerized Tomography, Novosibirsk, Russia, August 1993; the Program Chair and Coeditor of the *Proceedings of the 15th Annual International Conference of the IEEE EMBS*, October 1993, San Diego, CA; and Program Cochair of the 20th Annual International Conference of the IEEE EMBS, Hong Kong, October 1998.

His research productivity was recognized with the 1997 and 2001 Research Excellence Awards of the Department of Electrical and Computer Engineering, the 1997 Research Award of the Faculty of Engineering, and by appointment as a “University Professor” in 2003, at the University of Calgary. Dr. Rangayyan was awarded the Killam Resident Fellowship in 1998 and 2002 by the University of Calgary in support of writing two books: *Biomedical Signal Analysis* (IEEE/Wiley, 2002) and *Biomedical Image Analysis* (CRC, 2005). Dr. Rangayyan was recognized by the IEEE with the award of the Third Millennium Medal in 2000, and was elected as a Fellow of the IEEE in 2001, Fellow of the Engineering Institute of Canada in 2002, Fellow of the American Institute for Medical and Biological Engineering in 2003, and Fellow of SPIE—The International Society for Optical Engineering in 2003.