This book is concerned with optical microscopy; the principles, instruments, and limitations of far-field microscopes. Alternative types of microscopes operate in the near-field (in which the object-to-microscope distance is less than the wavelength of light), which provide another type of optical microscopy that exceeds the classical limit of resolution (Jutamulia, 2002).

Although the emphasis of this book has been on confocal microscopes and multiphoton excitation microscopes, the reader should not fall into the trap of using those instruments that are available, familiar, or that were successful in the past. Both types of microscopes are limited by the depth of penetration and a significant difference in the lateral and axial resolution.

As research problems evolve, there is always the possibility that other types of imaging may be more appropriate and provide unexpected solutions. The great advances made in optical microscopy, both in far-field and near-field optical microscopes, have a significant impact on our visualization and understanding of the microscopic world.

Similarly, nonoptical imaging modalities such as ultrasound, computerized x-ray tomography or x-ray computed tomography (CT), and magnetic resonance imaging are in continuous development and evolution. These techniques have been adapted to a wide range of specimens, from whole body imagers to microscopes for very small specimens. The reader should be open to new and to evolving techniques. The message is simple: the instrument used in the investigation must be appropriate to the questions asked and to the specimen under observation. Resolution and contrast are partial considerations; there are also factors of safety, specimen area and thickness, and image acquisition time. Optical microscopes offer high-resolution, high-contrast images, but only for a small area.

Optical microscopy is inherently two-dimensional: the focal plane is flat. Another consideration is that the axial and lateral resolutions are very different. The depth of penetration is limited by both the microscope and the specimen. The free-working distance of the microscope objective is a limit of the instrument. The absorption and scattering coefficients of the specimen limit the light penetration into the thickness of the specimen. There are many specimens whose diameter or thickness exceeds the depth of penetration of the light microscope. Further development and progress in the fields of optical biopsy and in vivo microscopy for biology and medicine may reach limits based on these considerations.

Fortunately, there are new and exciting advances to solve some of these problems. Optical projection tomography has been developed to provide high-resolution three-dimensional images of both fluorescent and nonfluorescent biological specimens with a thickness up to 15 mm (Sharpe et al., 2002). Another approach to imaging large, thick, live biological specimens is selective plane illumination mi-
Another approach that is emerging as an important diagnostic imaging tool is optical low-coherence reflectometry. This technique was originally developed in the telecommunications industry for testing fiber optic cables and integrated optical devices. In the last decade the field has been further developed and applied to biology and diagnostic medicine (Masters, 2001).

There are still obstacles on the path to imaging live cells, tissues, and organs. The depth of penetration is not sufficient for many specimens and for “optical biopsy.” The problem of phototoxicity is a major concern. Optical microscopes are inherently two-dimensional, but they are used to view a three-dimensional world.

Microscopes are tools. Humans are tool users, but they are also tool makers. In this book I have described the ingenious tools, from optical microscopes to fluorescent probes, that have been developed so we can image the invisible world of the microcosm. There is no reason to believe that this development of new tools will not continue. And with the new developments in microscopy will come increased knowledge and understanding of our world.
Appendix

Reference Materials and Resources

W. Becker, *Advanced Time-Correlated Single Photon Counting Techniques*, Springer Verlag, Berlin (2005). This is an important and practical book on the topic of single-photon counting techniques. The chapter on detectors for photon counting is both clear and comprehensive and thus highly recommended.

R. W. Boyd, *Nonlinear Optics*, 2nd ed., Academic Press, San Diego (2003). This is a very well written textbook that provides the theoretical foundation for modern nonlinear optics. This book provides a solid foundation to understand the fundamentals of nonlinear spectroscopy and microscopy.

experimental details in order that the reader can use these methods. There are several chapters on in vivo microscopy.

T. R. Corle and G. S. Kino, *Confocal Scanning Optical Microscopy and Related Imaging Systems*, Academic Press, San Diego, CA (1996). This book is a comprehensive introduction to the field of scanning optical microscopy, including the confocal scanning optical microscope and the optical interference microscope. It contains a very clear introduction to the theory of depth and transverse resolution. This is a good source of applications in the semiconductor industry and metrology. The theory of the confocal microscope is well written.

D. J. Goldstein, *Understanding the Light Microscope: A Computer-aided Introduction*, Academic Press, London (1999). This very practical book contains computer programs that allow students to simulate the effects of aperture, spherical aberration, and focus of the objective lens; the operation of bright-field and phase contrast microscopes; quantitative polarized-light microscopy; and a ray-tracing program that shows the effects of aberrations in simple and compound lenses. The book contains a good review of Abbe’s elementary diffraction theory and various techniques to form contrast in optical microscopy.

E. Hecht, *Optics*, 4th ed., Addison-Wesley, Reading, MA (2001). This is the standard work on optics for the undergraduate level. It offers a clear discussion of geometrical and physical optics. The numerous figures clearly illustrate the fundamental principles of optics.

D. B. Murphy, *Fundamentals of Light Microscopy and Electronic Imaging*, Wiley-Liss, New York (2001). This is a very good book to learn the fundamentals of microscopy. Each chapter includes practical demonstrations and exercises. It has a good balance between the theory and the practical aspects of optical microscopy. Several laboratory demonstrations of important principles are described.

York (2005). This is a practical guide for the imaging of tissues and organisms of key importance for neuroscience and development. The tutorial on microscopy and microscope optical systems by Lanni and Keller is both clear and comprehensive.

Journals

Applied Optics

Biophysical Journal

Journal of Biomedical Optics

Journal of Microscopy

Journal of Optical Society of America

Microscopy Research and Technique

Optics Communications

Optics Express

Optics Letters

Special Journal Issues on Multiphoton Microscopy

Internet Resources

Fluorescent Probes

Molecular Probes, Inc.: http://probes.invitrogen.com/

This website contains links to many other Web resources: noncommercial, journal, commercial sites, conferences, and other meetings.

Their online catalog contains a useful tutorial on many aspects of fluorescence and an extensive catalog of fluorescence probes for labeling: ions, molecules, cells, tissues and organs. Their catalog is actually a wonderful, comprehensive reference containing application images, references, absorption and emission spectral data, and the chemical and photochemical properties of all their products under a variety of conditions. Detailed protocols are provided for loading cells, calibrating fluores-
cence intensity, the use of caging groups and their photolysis, the study of signal transduction, using potentiometric probes, and using dyes to determine ion concentration and pH. They also have books on microscopy and fluorescence techniques and a good variety of calibration systems. The protocols contained in the handbook cover the scale from membranes, cell organelles, cells, tissues, and organs to whole organisms used for studies of their developmental biology. The online version of the handbook is updated often and of great utility.

Information on confocal microscopy, multiphoton excitation microscopy, microscopes, lasers, image processing software, techniques, technical information on microscope objectives, light sources, microscope images from many types of microscopes, and a wide range of detailed technical application notes can be found here.

Quantum Dot Fluorescent Probes, Quantum Dot Corporation, Hayward, CA: http://qdots.com

Microscopes and Tutorials on Microscopy

Florida State University’s Molecular Expressions: http://micro.magnet.fsu.edu
Includes confocal and multiphoton microscopy Java tutorials.

Leica: http://www.leica-microsystems.com

Nikon Instruments, Inc.: http://www.nikonusa.com/, http://www.microscopyu.com
Interactive Java tutorials.

Interactive Java tutorials and Microscopy Resource Center, which contains a section on microscopy history, several websites showing collections of antique microscopes from around the world.

Carl Zeiss: www.zeiss.com, www.zeiss.de/lsm
Tutorials and application notes on all aspects of microscopy; searchable database.

Lasers

Coherent, Inc.: http://www.cohr.com

Other Components

Physikinstrumente: www.physikinstrumente.de
Tutorial on piezoelectrics in micropositioning devices; piezoelectricity and piezo actuators.
Newport Corporation and Spectra Physics: http://www.newport.com
A good source of CW and pulsed lasers and an optics tutorial.

New Focus: http://www.newfocus.com

Detectors

Hamamatsu: http://www.hamamatsu.com

Becker & Hickl GmbH, Berlin, Germany: http://www.becker-hickl.de/

Photometrics, a division of Roper Scientific, Inc.: www.roperscientific.com
This website contains technical information and application notes for cooled, back-illuminated, high quantum efficiency (90%) charge-coupled-device cameras with on-chip multiplication gain.

Scanners

Cambridge Technology, Inc.: www.camtech.com

Optical Filters

Omega Optical Inc.: http://www.omegafilters.com

Chroma Technology Corporation: http://www.chroma.com

Microscopy Societies

Microscopy Society of America: http://www.microscopy.org

Royal Microscopical Society: http://www.rms.org.uk/

Image Processing Software

Patents

Patents are an excellent source of information for the understanding, design, and construction of instruments. Here you can search by key words, patent inventor name, patent number.
Other Websites

Professor Peter So laboratory: http://web.mit.edu/solab/
This website provides a wealth of information on the engineering of novel microscopy instrumentation and the application of these new tools to biomedical problems. These new types of microscopic and spectroscopic instruments are designed to span the range from single molecule dynamics, to the cellular level, to the tissue level. There are useful links for optical instrumentation.

Professor Stefan Hell laboratory: www.4pi.de
Tutorial information on how to overcome the Abbe diffraction limit in light microscopy and achieve three-dimensional resolution in the 100 nm range. The group’s publications are available as PDFs. There are links to sites on the history of the microscope.

References for Applications in Ophthalmology and Dermatology

Ophthalmology

These references cover the development of instruments and the ex vivo and in vivo microscopic investigation of cells, tissues, and organs. There are instruments designed to use light microscopy to monitor cellular metabolism; optical techniques to provide three-dimensional microscopy of the cornea, the ocular lens, and the optic nerve in vivo; the development of clinical confocal microscopes for diagnostic “optical biopsy” of the living eye; the use of confocal microscopy to investigate redox metabolism is developed, as is the use of multiphoton excitation microscopy to monitor redox metabolism in the ex vivo cornea; correlative microscopy is demonstrated by the use of both confocal and electron microscopy on the same human lenses in the same regions.

Dermatology

These papers demonstrate the use of *in vivo* confocal microscopy and *in vivo* multiphoton excitation microscopy and spectroscopy to investigate the structure and function of *in vivo* human skin.

Index

A

Abbe diffraction theory of image formation, 40
Abbe equation, 44
Abbe, Ernst
 about, 6
 contributions of, 37
Abbe sine condition, 39
achromats, 28
acousto-optical deflector, 105
Airy disk, 41, 50
Airy pattern, 40
Alhazen, 4
aliasing, 19
Amici, Giovanni Battista, 5
amplitude point spread function (PSF), 52
analog-to-digital converters, 103
angular aperture, 31
aperture, 24
aperture diaphragm, 25
aperture planes, 33
apochromats, 29
astigmatism, 21
axial chromatic aberration, 22

B

back focal plane, 26
Baer, 124
Baer Ph.D. thesis, 124
beam scanning, 139–141
beam waist, 137
birefringence, 62
Brewster, David, 10
bright-field microscopy, 70
Brumberg, E. M., 11

C

Caspersson, Torbjoern O., 15
catadioptric, 26
catoptric, 26

cleaning optics, how to, 189
clinical confocal microscope, 130–131
colliding-pulse mode locking, 159
color translation, 64
coma, 21
comparison of confocal and multiphoton
 excitation microscopes, 165–168
compound microscope, 22
condenser iris diaphragm, 26
confocal microscope, 90
 comparison of designs, 109–111
 comparison with multiphoton excitation
 microscope, 165–168
 components, see Chapter 9
 limitations, 111–115
confocal principle, 142
confocal scanning laser microscope (CSLM),
 102
confocal theta microscopy, 183
conjugate, 25
conjugate planes, 33
conjugate points, 33
contrast, 55
Coons, Albert, 12
correlative microscopy, 185
critical illumination, 7

dark-field microscopy, 71
Davidovits, P., 88
deconvolution techniques, 84
depth discrimination, 51, 83
depth of field, 28
depth of focus, 28
detectors
 characteristics of, 144
 noise in, 146
 types of, 145
diaphragm, 25
dichroic mirror
 defined, 32
 in a confocal microscope, 141–142
Index

differential interference, 57
differential interference contrast (DIC) microscopy, 60–63
diffraction, 40
diffraction limit of resolving power, 40
diffraction-limited resolution, 44
dioptic, 26
dispersion, 174
distance, 40
distortion, 22
dwell time, 111

E
Egger, M. D., 88, 90
Ehrlich, Paul, 9–11
Ellinger, Phillip, 11
entrance pupil, 25
epi-illumination, 34
episopic, 34
exit pupil, 25, 38
eyepiece, 27

F
field curvature, 21
field diaphragm, 25
field planes, 34
finite optical system, 29
fluorescence microscopy, development of, 9
fluorescence saturation, 112
fluorite, 29
fluorochrome, 12
flying-spot microscope, 71
free working distance, 29
front focal plane, 26

G
Gaussian approximation, 38
Gaussian beam, 137
Goldmann, Hans, 120
Göppert-Mayer, Maria, 159, 161–162
Gram, Christian, 9
group velocity dispersion, 174

H
Hadravsky, Milan, 89
Hooke, Robert, 14
Huygens, Christiaan, 4

I
Ichihara, Akira, 98
image fidelity, 19
image plane, 38
infinity optical system, 29
infinity-corrected microscope objectives, 29
instrumentation, 171, 173
intensity point spread function (PSF), 52
interference, 40
interference microscope, 57

K
Keilin, David, 15
Kino, Gordon, 94
Koch, Robert, 15
Koester, Charles, 127–128
Köhler illumination, 7

L
laser safety, 189
laser-scanning confocal microscope (LSCM), 102–106
lateral chromatic aberration, 22
lateral objective scanning, 140
lifetime imaging microscopy, 56
light sources, 135–139
limitations, 181
Lister, Joseph Jackson, 5
live cell and tissue imaging, 186–187

M
MacMunn, Charles Alexander, 15
Maiman, Theodore, 69
Masters, Barry, 128–129
Maurice, David, 120–126
mechanical tube length, 27
Mellors, Robert C., 75
Metchnikoff, Eli, 15

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 10 Nov 2019
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use
Index

microlens Nipkow disk confocal microscope, 98
microscope
components, 23–28
compound, 22
history of, 3–9
objectives, 28, 147–149
optical, defined, 19
Minsky, Marvin, 83, 85–89
mode locking, 158
multimodal microscopes, 186
multiphoton excitation microscope
comparison with confocal microscope, 165–168
development of, 161–165
instrumentation of, 171–177
limitations, 181–183
theory of, 169–171
multiple imaging axis microscopy (MIAM), 183

N
Naora, Hiroto, 77
Nipkow disk, 74
Nipkow, Paul, 74
Nomarski, Georges, 8
nonlinear microscopy, development of, 153–160
Nyquist theorem, 19

O
object plane, 38
oblique coherent illumination, 44
ocular, 27
one-sided Nipkow disk, 95
optical aberrations, 21
optical axis, 8, 21, 33
optical microscope defined, 19
optical path length, 40
optical sectioning, 83
orthoscopic image, 45
oscillating mirror scanning-slit confocal microscope, 100
out-of-focus plane, 124

P
paraxial limit, 38
paraxial theory, 38
parfocal, 28
parfocal distance, 29
parfocal objectives, 8
Petrán, Mojmir, 89
phase contrast microscopy, 57
photobleaching, 13, 181
photodamage, 13, 182
pinholes, 142–144
size and spacing, 96
point spread function (PSF), 52
point spread pattern, 50
pupil, 24

Q
Q-switching, 158
quantum dots, 12–13
quantum efficiency, 113

R
Rayleigh criterion, 50
real image, 22
real-time scanning-slit confocal microscope, 130
reflected-light microscopy, 71
refraction, 58
refractive index, 31
resel, 107
resolution
axial, 52, 107, 109
defined, 49
lateral, 107
transverse, 52, 107
resolving power, 39, 49
Roberts, F., 76

S
safety with lasers, 189
scanning optical microscopy, early developments, 73–80
scanning systems, 139
scanning-slit confocal microscope, 117–119
scanning-slit confocal systems, 117
Schleiden, 15
Schwann, 15
semaiapochromate, 29
Siebenkoph, Wilhelm, 8
signal-to-noise ratio (SNR), 50
space invariant imaging, 139
Sparrow criterion, 50
spatial coherence, 43
spatial frequency, 19
specular microscope, 120–122
spherical aberration, 21
stage-scanning confocal microscope, 85–86
stimulated emission depletion (STED) microscopy, 183
Stokes shift, 10
Stokes, George G., 10
Stübel, Hans, 11
Svishchev, G. M., 100

T
tandem-scanning confocal microscope, 89–94
tandem-scanning reflected light microscope, 93
temporal coherence, 43, 136
Thaer, Andy, 130
thermal damage, 182
thick specimens, problem with, 69
three-photon excitation microscopy, 170
tube lens, 27
two-photon excitation microscopy, 169
two-point resolution, 49

U
ultramicroscopy, 8
ultraviolet and blue light, 148

V
van Leeuwenhoek, Antony, 5
vertical illuminator, 34
video-enhanced contrast microscopy, 63
Virchow, Rudolf, 15
virtual image, 23
virtual state, 161

W
Warburg, Otto, 15
Weber, Klaus, 78

X
Xiao, Guoqing, 94

Y
Young, J. Z., 76

Z
Zernike, Fritz, 8
Zsigmondy, Richard, 8
Barry R. Masters, formerly a Gast Professor in the Department of Ophthalmology, University of Bern, Switzerland, is currently an independent consultant. He was a professor at the Uniformed Services University of the Health Sciences in Bethesda, Maryland. He is a Fellow of both the Optical Society of America (OSA) and SPIE—The International Society for Optical Engineering. He received a BSc degree in Chemistry from the Polytechnic Institute of Brooklyn, an MSc degree in Physical Chemistry from Florida State University (Institute of Molecular Biophysics), and a Ph.D. degree in Physical Chemistry from the Weizmann Institute of Science in Israel. He is an editor or author of several books: Noninvasive Diagnostic Techniques in Ophthalmology (1990); Medical Optical Tomography: Functional Imaging and Monitoring (1993); Selected Papers on Confocal Microscopy (1996); Selected Papers on Optical Low-Coherence Reflectometry and Tomography (2000); and Selected Papers on Multiphoton Excitation Microscopy (2003). He is a co-editor of Biomedical Optical Biopsy, an OSA CD-ROM. He has published 80 refereed research papers, 110 book chapters and proceedings, and 105 scientific abstracts. In 1999 Professor Masters and Professor Böhnke shared the Vogt Prize for Research (the highest Swiss award for Ophthalmology) for their research on the confocal microscopy of the cornea. He received an AAAS Congressional Science & Engineering Fellowship (OSA/SPIE) in 1999–2000. Dr. Masters has been a Visiting Professor at The Netherlands Ophthalmic Research Institute, Amsterdam; Beijing Medical University, Beijing, PRC; Science University of Tokyo, Japan; University of Bern, Switzerland; and a Visiting Research Fellow, Nuffield Laboratory of Ophthalmology, University of Oxford. He is a member of the editorial board of Computerized Medical Imaging and Graphics; Graefe’s Archive for Clinical and Experimental Ophthalmology; and Ophthalmic Research. He is a member of OSA’s Applied Optics Patent Review Panel. His research interests include the development of in vivo confocal microscopy of the human eye and skin, cell biology of differentiation and proliferation in epithelial tissues, the application and development of multiphoton excitation microscopy to deep-tissue imaging and spectroscopy, one- and two-photon metabolic redox imaging, diagnostic and functional medical imaging, optical Fourier transform methods for cellular pattern recognition, and fractal analysis of the vascular system.