Appendix 4
Useful Equations and Constants

EM Waves

\[\lambda f = c; \ E = hf; \ \lambda = \frac{hc}{\Delta E}; \ c = 2.998 \times 10^8, \ 1 \text{ eV} = 1.602 \times 10^{-19} \text{ J} \]

\[h = \text{Planck’s Constant} = \begin{cases}
6.626 \times 10^{-34} \text{ J} \cdot \text{s} \\
4.136 \times 10^{-15} \text{ eV} \cdot \text{s}
\end{cases} \]

\[\Delta E (\text{eV}) = \frac{1.24 \times 10^{-6}}{\lambda (\text{m})} = \frac{1.24}{\lambda (\mu \text{m})} \]

Bohr Atom

\[r_n (\text{m}) = n^2 \times 0.528 \times 10^{-10} / Z. \]

\[E_n = -\frac{1}{2} \left(\frac{Ze^2}{4\pi \varepsilon_0 \hbar} \right)^2 \frac{m}{n^2} = Z^2 \frac{E_i}{n^2}; \ E_i = -\frac{me^4}{32\pi^2 \varepsilon_0 \hbar^2} = -13.58 \text{ eV}; \]

Blackbody Radiation

\[k = 1.38 \times 10^{-23} \frac{\text{J}}{\text{K}}; \ \sigma = 5.67 \times 10^{-8} \frac{\text{W}}{\text{m}^2 \text{K}^4}; \ a = 2.898 \times 10^{-3} \text{ mK} \]

\[\text{Radiance} = L = \frac{2hc^2}{\lambda^5} \frac{1}{e^{\frac{hc}{\lambda kT}} - 1} \]

\[\text{Stefan-Boltzmann law:} \ R = \sigma \varepsilon T^4 \left(\frac{\text{W}}{\text{m}^2} \right) \]
Wien’s law: $\lambda_{\text{max}} = \frac{a}{T}$

$T_{\text{radiance}} = e^{1/4} T_{\text{kinetic}}$

Reflection and Refraction

$$n = \frac{c}{v} \quad n_1 \sin \theta_1 = n_2 \sin \theta_2$$

$$r_\perp = \frac{n_1 \cos \theta_1 - n_2 \cos \theta_2}{n_1 \cos \theta_1 + n_2 \cos \theta_2} \quad r_\parallel = \frac{n_2 \cos \theta_1 - n_1 \cos \theta_2}{n_2 \cos \theta_1 + n_1 \cos \theta_2} \quad R = \left(\frac{n_1 - n_2}{n_1 + n_2} \right)^2$$

Optics

$$\frac{1}{f} = \frac{1}{i} + \frac{1}{o}; \quad f/# = \frac{\text{focal length}}{\text{diameter}}$$

Rayleigh criteria: $\text{GSD} = \Delta \theta \cdot \text{range} = \frac{1.22 \times \lambda}{\text{diameter}} \cdot \text{range}$

Orbital Mechanics and Circular Motion

$$v = \omega r; \quad \omega = 2\pi \frac{f}{\tau}; \quad \tau = \frac{1}{f} = \frac{2\pi}{\omega}$$

$$F_{\text{centripetal}} = m \frac{v^2}{r} = m \omega^2 r$$

$$\mathbf{F} = -G \frac{m_1 m_2}{r^2}, \quad F = g_o m \left(\frac{R_{\text{Earth}}}{r} \right)^2; \quad G = 6.67 \times 10^{-11} \text{N} \text{ m}^2 \text{ kg}^{-2};$$

$$g_o = G \frac{m_{\text{Earth}}}{R_{\text{Earth}}^2} = 9.8 \frac{m}{s^2}$$

$R_{\text{Earth}} = 6.38 \times 10^6 \text{ m}, m_{\text{Earth}} = 5.9736 \times 10^{24} \text{ kg}.$

Circular motion: $v = \sqrt{\frac{g_o}{r} R_{\text{Earth}}}$

Elliptical orbit: $v = \sqrt{GM \left(\frac{2}{r} - \frac{1}{a} \right)}$

$$\tau^2 = \frac{4\pi^2}{g_o R_{\text{Earth}}^2} r^3 = \frac{4\pi^2}{M_{\text{Earth}} G} r^3$$
Index

A
- absorption, 52
- adaptive optics, 66, 67, 102
- Advanced Camera for Surveys (ACS), 85
- Aerojet, 173
- AHI, 176, 177
- air order of battle (AOB), 3, 4, 62
- airborne, 19, 20
- Airy disk, 72
- aperture, 69
- astronaut photography, 13
- atmospheric absorption, 63
- atmospheric scattering, 64
- atmospheric turbulence, 66
- AVIRIS, 132, 133, 134
- azimuthal antenna pattern, 188, 189
- covariance, 150
- cross track, 80, 81

D
- Defense Meteorological Satellite Program (DMSP), 10, 11, 23, 98–100
- Defense Support Program (DSP), 172, 173, 174
- dielectric coefficient, 192, 229
- diffraction, 70, 72
- Digital Elevation Model (DEM), 218
- Digital Number (DN), 142, 143
- dynamic range, 127, 143, 144

E
- Earth Resources Technology Satellite (ERTS-1), 120
- electronic order of battle (EOB), 3
- elements of recognition, 137–140
 - association, 140
 - height, 138
 - pattern, 139
 - shadow, 138
 - shape, 137
 - sight, 140
 - size, 138
 - texture, 139
 - time, 140
 - tone, 138
- emissivity, 158, 159, 160
- energy, 35
- Enhanced Thematic Mapper (ETM), 120, 122
- EROS, 9
- European Radar Satellite (ERS), 202, 203
- exposure time, 99

B
- bandgap, 75, 76
- bathymetry, 222, 223, 224
- beam pattern, 186, 189, 230
- blackbody, 45, 158
- Bohr atom, 42, 225–228

C
- Cassegrain, 86, 87, 93, 95, 122
- central force problem, 103
- centripetal force, 105
- chirp, 184, 185
- circular motion, 104
- corner reflectors, 194
- corona, 55, 59, 61, 233–242
- correlation, 149, 150

251
F

f/#, 69
Faint Object Camera (FOC), 85, 89
film, 74
filters, 146
framing system, 80, 81
frequency modulation, 184
FTHSI, 135, 136

G

gambit, 57
geometric resolution, 92
geosynchronous orbit (GEO), 106, 111, 112, 115
Gnanalingam, Suntharalingam, 184
GOES, 9, 21, 167–169, 172
GRAB, 56
gravity, 103

H

Hasselblad, 13
histogram, 142, 143, 145, 147–149
Hubble telescope, 82–90
human vision, 118, 119
hydrogen atom, 42, 44
Hyperion, 133, 135

I

IKONOS, 17, 19, 92–98, 100, 131, 132
image intensifier, 41
imaging radar, 179, 181
inclination, 108, 109
Indian Remote Sensing Satellite (IRS), 17, 18
indium antimonide (insb), 76, 125, 133
infrared, 20, 157
interferometry, 212
internal waves, 200, 204
interpretation keys (See elements of recognition), 137–140

K

Kepler’s laws, 106–108
kernel, 146

keyhole, 57
kinetic temperature, 159
KH4, 57
KH4B, 58

L

Landsat, 13, 14, 22, 120, 163, 164
LIDAR, 219
low earth orbit (LEO), 110, 121

M

magnification, 68
Maxwell’s equations, 33
medium earth orbit (MEO), 111, 115
mercury cadmium telluride (HgCdTe), 76, 125
microbolometer, 79
MIDAS, 174
Molniya orbit (HEO), 113, 115
Multangle Imaging Spectroradiometer (MISR), 52
Mys Schmidt, 59

N

Nadar, 1
naval order of battle (NOB), 8, 97
NIMBUS, 166

O

oil slicks, 200
Optech, 219–222
orbital elements, 108
orbital period, 108
order of battle (OOB), 2

P

photoelectric effect, 38, 39
photomultiplier tube, 40, 41
pinhole, 69, 70
Planck’s law, 45, 46
polarization, 35, 36, 195
principle components (PC) transform, 151
pushbroom, 81
Index

Q

Quickbird, 6, 92–94, 131

R

radar, 24, 179
radar azimuthal resolution, 185–188
radar cross section, 191
radar range resolution, 182–184
RADARSAT, 24, 201, 202
range antenna pattern, 189
Rayleigh criteria, 70, 71, 73, 90, 102, 186
Rayleigh scattering, 64
reflectance, 117, 119
reflection, 50
Ritchey-Chretien Cassegrain, 86, 122

S

Sary Shagan, 6
scattering, 51
SEBASS, 175, 176
Severodvinsk, 59–61, 97, 98
ship detection, 201, 202
ship wakes, 203
Shuttle Imaging Radar (SIR), 25–27, 197, 198
Shuttle Radar Topographic Mapping (SRTM) Mission, 214–218
silicon, 76, 124, 133
Snell’s law, 50
spectral response, 126, 129–132
soil penetration, 193, 199, 209
solar spectrum, 48
space order of battle (SOB), 7
SPOT, 16, 17, 128–130
Sputnik, 55
South Atlantic anomaly, 86
SR-71, 5

T

Thematic Mapper (TM), 120, 122
thermal crossover, 162, 163
thermal inertia, 161
thin lens equation, 67, 68
time-delay integration (TDI), 100
TIROS, 166
TMSAT, 12
Tournachon, 1
Tracking and Data Relay Satellite System (TDRSS), 84, 243–248
Transmission, 49

U

UoSAT, 11

W

wave equation, 34
wavelength, 35
weather satellites, 165, 170
wide-field/planetary camera (WF/PC), 84, 88, 90
Wien’s displacement law, 46, 158
wiskbroom, 80

X

XSS-10, 8
About the author

Dr. R. C. Olsen received his degrees at the University of Southern California (B.S.) and the University of California at San Diego (M.S., PhD). His graduate work in San Diego and early career in Huntsville, Alabama, were in the area of space plasma physics, with a particular emphasis on satellite charging behavior and the control of satellite charging. At the Naval Postgraduate School, he moved into the field of remote sensing, working with both optical and radar systems but in particular with spectral imaging systems. He teaches courses in remote sensing and classified military systems, and works to develop new methods of exploiting both civil and military systems for terrain classification and target detection. He has directed the thesis efforts of over 90 students working for their master’s degrees, more than half of those in the area of remote sensing.