References


Index to Referenced Authors

Agarwal, G. S., 111, 117
Apresyan, L. A., 103
Arfken, G., 72
Arimoto, H., 121
Baltes, H. P., 95
Barabanenkov, Yu. N., 76
Berry, R. H., 25
Bloisi, F., 40
Bouchal, Z., 43
Boyd, R. W., 124
Carter, W., 85, 86, 101
Chandrasekhar, S., 125
Chávez-Cerda, S., 46, 48, 49, 56
Collett, E., 90
Durnin, J., 33, 35, 50
Duvernoy, J., 23
Eberly, J. H., 35, 50
Fante, R. L., 99
Florjanczyk, M., 58
Foley, J. T., 90, 111, 117
Friberg, A. T., 11, 51–53, 63, 93, 96–98, 100, 117
Gamo, H., 3
Geist, J., 95
Goodman, J. W., 13, 18
Gori, F., 7, 8, 10, 34
Gradsteyn, I. S., 71
Greenleaf, J. F., 60
Guattari, G., 10, 34
Gutiérrez-Vega, J. C., 48
Hall, D. G., 44
Häusler, G., 57
Heckel, W., 57
Herman, R. M., 55
Hernández-García, E., 74, 126
Hobson, M. P., 25
Iftekharunuddin, K. M., 59
Imai, Y., 61
Indebetouw, G., 36
Itoh, K., 120, 121
Iturbe-Castillo, M. D., 48
Karim, M. A., 59
Kettunen, V., 45
Kim, K., 112
Kintner, E. C., 19
Kravtsov, Yu. A., 103
Krivoshlykov, S. G., 37
Littlejohn, R. G., 118, 119
Lu, J.-Y., 60
Mandel, L., 4
Marathay, A. S., 87, 88
Marchand, E. W., 79, 82, 83
Martínez-Herrero, R., 22, 102
Martínez-Niconoff, G., 27–32, 64–70
McArdle, N., 54
Mejías, P., 22, 102
Meneses-Nava, M. A., 46
Miceli, Jr., J. J., 35, 50
Mishra, S. R., 42
Subject Index

A
alternative coherent-mode representation, 63, 65, 68, 71, 73
alternative radiatively equivalent source, 65, 67
amplitude spread function, 19, 25
amplitude transmittance, 16, 43
analytic signal, 1

B
Bessel basis, 68, 69
Bessel beam, 31
Bessel-correlated beam, 39, 44
Bessel-correlated source, 1, 12, 39
bilinear system, 15, 19
bilinear transform, 15, 22

C
characteristic function of a source, 56
classical radiometry, 51, 58, 60
classical theory of optical coherence, 2
coherence theory in the space-frequency domain, 1
coherent-mode representation, ix, 1, 6, 15, 20, 22, 55, 57
of a field, ix, 1, 6
of an optical system, ix, 15, 20
of optical system, 1
of radiance, 55, 57
of radiant emittance, 57
of radiant flux, 57
of radiant intensity, 57
coherent-mode structure of a field, 5, 29
complete coherence, 1, 6, 15, 23
complete incoherence, 15, 23, 72
coupled Helmholtz equations, 3
cross-correlation function, 1, 8
cross-spectral density function, ix, 2, 7, 8, 11, 12, 20, 53

D
degree of global coherence, 11, 13, 62
Dirac comb function, 25
double-impulse response, 16, 19

effective coherence volume, 9
effective number of coherent modes, 9, 23, 62
effective volume of a field, 11
eigenfunctions, 29, 39, 65
eigenvalues, 6, 9, 29

F
far-zone approximation, 55
fast bilinear transform (FBLT) algorithm, 24, 29
Fredholm integral equation of the second kind, 5
free space, 3, 31, 60
fundamental Bessel beam, 31, 38, 44
fundamental law of radiometry, 51, 57

G
Gaussian Schell-model source, 1, 11, 25, 61
generalized radiance, 52, 58, 60
generalized radiant emittance, 52
generalized radiant flux, 52, 55
generalized radiant intensity, 52

H
Hermitian basis, 68
Hermitian symmetry, 2

I
image of an object, 19, 25
impulse response, 19, 25, 22
irradiance, 67

L
Lambertian source, 1, 13, 62, 71
lens law, 19
light capillary beam, 41, 49
light string beam, 41, 44

M
Mercer’s expansion, 5
modal object, 21

85
<table>
<thead>
<tr>
<th>Modal Output</th>
<th>20</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modal Radiometric Characteristics</td>
<td>57, 61</td>
</tr>
<tr>
<td>Modal System</td>
<td>21, 28</td>
</tr>
<tr>
<td>Mode</td>
<td>1, 6, 10, 20, 23, 34, 61, 68</td>
</tr>
<tr>
<td>Modern Radiometry</td>
<td>51</td>
</tr>
<tr>
<td>Mutual Coherence Function</td>
<td>2, 3</td>
</tr>
<tr>
<td>Nondiffracting Beam</td>
<td>31, 37</td>
</tr>
<tr>
<td>Nonnegative Definite Function</td>
<td>2</td>
</tr>
<tr>
<td>Object</td>
<td>16, 21, 29</td>
</tr>
<tr>
<td>Optical Signal</td>
<td>7, 8, 17, 52</td>
</tr>
<tr>
<td>Paraxial Approximation</td>
<td>17, 32, 55</td>
</tr>
<tr>
<td>Partial Coherence</td>
<td>ix, 1, 22, 27</td>
</tr>
<tr>
<td>Power Spectrum</td>
<td>8, 11, 12, 16, 24, 32, 54</td>
</tr>
<tr>
<td>Propagation-Invariant Field</td>
<td>31, 36–38, 40</td>
</tr>
<tr>
<td>Of the First Kind</td>
<td>36, 37</td>
</tr>
<tr>
<td>Of the Second Kind</td>
<td>36, 38</td>
</tr>
<tr>
<td>Of the Third Kind</td>
<td>36, 40</td>
</tr>
<tr>
<td>Pupil Function</td>
<td>18</td>
</tr>
<tr>
<td>Radiance</td>
<td>51, 53, 58</td>
</tr>
<tr>
<td>Radiant Emittance</td>
<td>51, 62</td>
</tr>
<tr>
<td>Radiant Flux</td>
<td>51, 53</td>
</tr>
<tr>
<td>Radiant Intensity</td>
<td>51, 62</td>
</tr>
<tr>
<td>Radiative Transfer Law</td>
<td>53, 58</td>
</tr>
<tr>
<td>Random Process</td>
<td>1</td>
</tr>
<tr>
<td>Rayleigh’s First Diffraction Formula</td>
<td>4</td>
</tr>
<tr>
<td>Sample Realization</td>
<td>1</td>
</tr>
<tr>
<td>Schell-Model Source</td>
<td>1, 11, 25, 61</td>
</tr>
<tr>
<td>Short-Wavelength Limit</td>
<td>60</td>
</tr>
<tr>
<td>Space-Frequency Domain</td>
<td>1</td>
</tr>
<tr>
<td>Space-Time Domain</td>
<td>2</td>
</tr>
<tr>
<td>Spectral Degree of Coherence</td>
<td>3, 6, 11</td>
</tr>
<tr>
<td>Spectral Density</td>
<td>2, 8, 16, 32, 52, 65</td>
</tr>
<tr>
<td>Spectral Radiant Flux</td>
<td>51</td>
</tr>
<tr>
<td>Square Integrability</td>
<td>2, 66</td>
</tr>
<tr>
<td>Stationary in the Wide Sense</td>
<td>2</td>
</tr>
<tr>
<td>Twist Phase</td>
<td>12</td>
</tr>
<tr>
<td>Wave Equation</td>
<td>3</td>
</tr>
</tbody>
</table>
About the author

Andrey S. Ostrovsky, born in 1944 in Russia, is at present a resident of Mexico. Degrees: M.Sc. in Electrical Engineering, Ph.D. in Technical Cybernetics, D.Sc. in Optics; all of them from the National Technical University of Ukraine. Titles: Professor of Technical Cybernetics at the National Technical University of Ukraine, Elected Member of the National Academy of Engineering of Ukraine, National Researcher of Mexico. Appointments: Assistant Professor, Professor, Head of Optical Engineering Department, at the National Technical University of Ukraine, 1970–1993; Professor of Physics and Mathematics Department at the Autonomous University of Puebla, Mexico, 1994–present. Scientific areas: Fourier optics and optical data processing, statistical optics and coherence theory. Publications: More than 100 scientific and technical articles in professional journals and books, 12 patents of Russian Federation. Tutorships: 12 Ph.D. and 58 M.Sc. theses. Memberships: OSA, Optical Societies of Ukraine, Russia and Mexico.