Coherent-Mode Representations in Optics

Andrey S. Ostrovsky
To the memory of my mother, Alla Burjinskaya Ostrovskaya, and my father, Sergey Ostrovsky.
Contents

Preface ix

Chapter 1 Coherent-Mode Representation of Optical Fields and Sources
1.1 Introduction 1
1.2 Foundations of the Coherence Theory in the Space-Frequency Domain 1
1.3 Coherent-Mode Structure of the Field 5
1.4 Ensemble Representation of the Cross-Spectral Density Function 7
1.5 Effective Number of Coherent Modes 9
1.6 Coherent-Mode Representations of Some Model Sources 10
1.6.1 Gaussian Schell-model source 11
1.6.2 Bessel-correlated source 12
1.6.3 Lambertian source 13
1.7 Concluding Remarks 14

Chapter 2 Coherent-Mode Representation of Optical Systems
2.1 Introduction 15
2.2 Bilinear Systems in Optics 16
2.3 Coherent-Mode Representations of a Bilinear System 19
2.4 Fast Algorithm for Bilinear Transforms in Optics 22
2.5 Numerical Simulation 24
2.6 Concluding Remarks 28

Chapter 3 Coherent-Mode Representation of Propagation-Invariant Fields
3.1 Introduction 31
3.2 Propagation-Invariant Fields 32
3.3 Coherent-Mode Structure of the Propagation-Invariant Field 34
3.4 Special Classes of Propagation-Invariant Fields 37
3.4.1 Propagation-invariant fields of the first kind 37
3.4.2 Propagation-invariant fields of the second kind 38
3.4.3 Propagation-invariant fields of the third kind 40
3.5 Generation of Propagation-Invariant Fields 42
3.6 Physical Simulation 47
3.7 Concluding Remarks 50

Chapter 4 Coherent-Mode Representations in Radiometry
4.1 Introduction 51
4.2 Generalized Radiant Flux 53
4.3 Coherent-Mode Representation of Radiometric Quantities 55
4.4 Free-Space Propagation of Modal Radiance 58
4.5 Modal Radiometry of Gaussian Schell-Model Source 61
4.6 Concluding Remarks 63

Chapter 5 Alternative Coherent-Mode Representation of a Planar Source 65
5.1 Introduction 65
5.2 Alternative Source and its Coherent-Mode Structure 65
5.3 Choice of the Alternative Modal Basis 68
 5.3.1 Hermitian basis 68
 5.3.2 Bessel basis 69
5.4 Numerical Simulation 71
5.5 Concluding Remarks 72

References 75

Index to Referenced Authors 84

Subject index 85
Preface

Everyone knows the fundamental role that the Fourier transform plays in optics, representing a monochromatic light field as a linear superposition of plane waves propagating in different directions. Perhaps, the coherent-mode representation of the optical field broached for the first time by H. Gamo in his *Matrix Treatment of Partial Coherence* (Progress in Optics III, E. Wolf, ed., North-Holland, Amsterdam, 1964), which was later developed by E. Wolf in his “New theory of partial coherence in the space-frequency domain” (*J. Opt. Soc. Am. A*, Vol. 72, No. 3, 1982, and Vol. 3, No. 1, 1986), plays a not less important role in contemporary optics. From a physical point of view, the coherent-mode representation describes an optical field of any state of coherence as a linear superposition of uncorrelated, completely coherent modes, a fact that gives new insight into the physics of generation, propagation, and transformation of optical radiation. From a mathematical standpoint, it expresses the cross-spectral density function of an optical field as a sum of terms that are separable in space, a fact that allows significant simplification of the analysis of statistical optical processes and systems. However, to my mind, the coherent-mode representation of optical fields, despite its power and attractiveness, has not yet found its due place in optical science and practice. This is affirmed, in particular, by a relatively small number of publications where the coherent-mode representation is treated. Even in a monumental treatise like *Optical Coherence and Quantum Optics* by L. Mandel and E. Wolf, less than two dozen pages are dedicated to this subject.

The present book represents a modest attempt to make up, to a certain extent, for a deficiency in possible applications of the coherent-mode representations in several areas of optics. This book is mainly based on the original results obtained by the author and his postgraduate students but, to ensure a thorough coverage of the total scope of the subject, it also contains some results of other authors, which are properly referenced. I tried to present this book in a brief recapitulative form, handy for both professionals and postgraduate students in physical optics. I hope that the book will be interesting for the reader and will stimulate the subsequent development of the coherent-mode representations in optics and their practical applications.

There are many people to whom I owe a special word of thanks for their help with the creation of this book. First of all, I consider it my pleasant duty to mention here the scientists whose publications had a decisive influence on the results presented in the book. Listed in alphabetical order, they are: G. S. Agarwal, W. Carter, J. Durnin, J. Duvernoy, J. T. Foley, A. T. Friberg, H. Gamo,

The main part of the writing was done at the Physics and Mathematics Department of the Autonomous University of Puebla, Mexico. I am grateful to M.Sc. E. Doger Guerrero, former rector of the university, M.Sc. E. Agüera Ibáñez, current rector, Dr. P. H. Hernández Tejeda, vice-rector, and Dr. C. Ramírez Romero, head of the department, for providing the excellent facilities for my work. Part of the text was prepared during my sabbatical leave at the National Institute of Astronomy, Optics, and Electronics, Mexico. I acknowledge my indebtedness to Dr. J. S. Guichard Romero, Director of the Institute, Dr. J. F. Soto Eguibar, Deputy Director, and G. Martínez Niconoff, former coordinator of the Optical Division, for their hospitality and fruitful collaboration. The work on the book was partially supported by the National Council for Science and Technology (CONACYT) of Mexico under the projects 3644-E, 25841-E, and 36875-E; this is much appreciated.

I acknowledge with thanks the excellent cooperation I received from the staff of SPIE Press at all stages of the production of this book. In particular, I wish to express my appreciation to Timothy Lamkins, Acquisitions Editor, and Sharon Streams, Press Manager, for their exceptional attention to my work.

Finally, I thank my wife, Marina, without whose patience, encouragement, and support this book would not have been possible.

Andrey S. Ostrovsky
Autonomous University of Puebla
Puebla, Mexico
May 2006