Electromagnetic Wave Propagation in Turbulence
Evaluation and Application of Mellin Transforms

SECOND EDITION

Richard J. Sasiela

SPIE PRESS
Bellingham, Washington USA
To my wife Joan whose love and support has meant so much
Contents

Preface to the first edition XI
Glossary .. XV

1 Introduction ... 1
1.1 Book Plan ... 2
1.2 Introduction to Mellin Transforms 7
1.3 Higher Transcendental Functions 15

2 Basic Equations for Wave Propagation in Turbulence 25
2.1 Turbulence Spectra .. 26
2.2 Rytov Approximation 37
2.3 Phase and Log-Amplitude Variances 41
2.4 Power Spectral Density 56
2.5 Beam Shape and Strehl Ratio 57
 2.5.1 Structure function dependent on aperture position ... 60
 2.5.2 Structure function independent of aperture position ... 62

3 Filter Functions .. 69
3.1 Circular Aperture Modes 70
3.2 Piston and Tilt on an Annulus 75
3.3 Finite Apertures and Focal Anisoplanatism 78
3.4 Adaptive-Optics Systems 83
3.5 Structure Function for a Distributed Beacon 84
3.6 Developing New Variance Filter Functions 87

4 Zero-Parameter Problems 95
4.1 Turbulence Models and Moments 96
4.2 Tilt and Piston for Collimated and Focused Beams 99
4.3 Gradient Tilt ... 102
4.4 Difference Between Gradient and Zernike Tilt 103
4.5 Zernike Mode Variance 104
4.6 Piston and Tilt of a Gaussian Beam 105
Table of Contents

4.7 Beam Movement at a Target .. 107
4.8 Angle-of-Arrival Jitter ... 108
4.9 Scintillation for Collimated and Focused Beams 110
4.10 Phase Variance with Finite Servo Bandwidth 113
4.11 Variances for Beams Corrected by Adaptive Optics 114

5 Integral Evaluation with Mellin Transforms .. 117
5.1 Integral Evaluation with One Parameter .. 118
5.2 Asymptotic Solutions .. 126
5.2.1 Alternate method of integral evaluation .. 131
5.3 Multiple Poles .. 132
5.3.1 Expansion of integrand functions .. 132
5.3.2 Example 1 .. 134
5.3.3 Example 2 .. 135
5.3.4 Example 3 .. 135
5.3.5 Example 4 .. 136
5.3.6 Example 5 .. 137
5.3.7 Example 6 .. 138

6 Examples with a Single Positive Parameter .. 145
6.1 Zernike Modes and Tilt for the von Kármán Spectrum 146
6.2 Tilt for the Greenwood Spectrum .. 150
6.3 Tilt with Finite Inner Scale ... 152
6.4 Piston- and Tilt-Removed Phase Variance on an Annulus 153
6.5 Effect of Diffraction on Tilt ... 160
6.6 Tilt Anisoplanatism .. 164
6.7 Power Spectral Density of Tilt ... 172
6.8 Scintillation with Finite Apertures and Sources 176
6.9 Scintillation with Finite Inner Scale ... 181
6.10 Scintillation Anisoplanatism .. 184
6.11 Focus Anisoplanatism .. 186
6.12 Zernike Anisoplanatism ... 188
6.13 Focal Anisoplanatism for Point Sources .. 195
6.14 Focal Anisoplanatism for Distributed Sources 200
6.15 Focal Anisoplanatism for Offset Sources ... 204

7 Strehl Ratio ... 209
7.1 Strehl Ratio for Propagation Through Turbulence 209
7.2 Strehl Ratio with Beam Jitter ... 214
7.3 Strehl Ratio with Anisoplanatism ... 219
7.4 Strehl Ratio for Various Anisoplanatic Effects 225
7.4.1 Displacement anisoplanatism ... 225
7.4.2 Angular anisoplanatism ... 225
7.4.3 Time-delay anisoplanatism ... 226
7.4.4 Chromatic anisoplanatism ... 228
7.4.5 Combined displacement anisoplanatism

7.5 Strehl Ratio Using Numerical Integration

7.5.1 Strehl ratio for uncorrected turbulence with tilt present and removed

7.5.2 Strehl ratio for a finite beacon and focused corrected beam

7.5.3 Strehl ratio for a finite beacon and collimated corrected beam

8 Mellin Transforms with a Complex Parameter

8.1 Mellin-Barnes Integrals with Complex Parameters

8.2 Asymptotic Results with a Complex Parameter

8.3 The Mellin Transform of an Exponential Times a Bessel Function

9 Finite Beam Characteristics As Examples with a Single Complex Parameter

9.1 Phase and Log-Amplitude Variances of Beam Waves

9.2 Power Spectral Density of Beam Waves

9.3 Scintillation on Beam Waves

9.4 Heuristic Scintillation Formulas

10 Mellin Transforms in N Complex Planes

10.1 Convergence of Multi-Parameter Series

10.2 Path Closure at Infinity

10.3 Integration in Multiple Complex Planes

10.3.1 Evaluation procedure for N complex planes

10.4 Asymptotic Solution in Two or More Complex Planes

11 Integral Evaluation with N Parameters

11.1 An Integral with Two Bessel Functions and a Sinusoid

11.2 An Integral with Three Bessel Functions

11.3 Example in Three and N Complex Planes

11.4 Effect of Outer Scale on Tilt Anisoplanatism

11.5 Tilt with Inner and Outer Scale

11.6 Power Spectrum of Tilt with Outer Scale

11.7 Structure and Correlation Functions with Inner and Outer Scales

12 Beam Shape

12.1 General Formula for Beam Shape

12.2 Beam Shape for Uncorrected Turbulence

12.3 Beam Shape with Tilt Jitter

12.4 Beam Shape with Anisoplanatism
Appendix A: Additional Mellin Transforms 351
Appendix B: Transcendental Functions 359
Index ... 363
Preface to the first edition

This book is directed at two audiences: those interested in problems of electromagnetic wave propagation in turbulence and those interested in evaluating integrals. For the first group, the text provides a systematic way to obtain analytic answers to problems in which the scintillation is small and there are no nonlinear effects due to high optical powers. For those interested in evaluating integrals, the integration method is explained in separate chapters. In the chapters containing examples of wave propagation in turbulence, the problem is quickly reduced to one of evaluating an integral, and can be viewed as examples of the integration technique.

To address these two audiences, this book develops a systematic way of expressing solutions to problems of electromagnetic wave propagation in turbulence in integral form. It also develops Mellin transform techniques that are used to evaluate these integrals. This technique has three major advantages over others: 1) it is applicable to a wide range of problems; 2) the application of the technique is straightforward; and 3) the answers are expressed in analytic form. Mellin transform and hypergeometric functions have been a scientific backwater and are used regularly by only a few people. That is a shame for several reasons. Mellin transforms allow a deeper understanding of infinite series. Knowing the Mellin transform of a function is tantamount to knowing its infinite series. Mellin transform techniques, which require an understanding of hypergeometric functions, enable one to deepen his or her understanding of elementary and transcendental functions. In addition to this pedantic usefulness, it is a natural way to solve several types of problems that have wide applicability. For instance, Mellin transforms permit one to perform integrations that are very difficult to perform by other means. They enable one to solve boundary value problems in spherical and cylindrical coordinates with the same ease that Fourier transform techniques afford in solving differential equations with constant coefficients. The self-similar characteristic of Mellin transforms leads to applications in image, radar and acoustic processing, and chaos and fractal theory.

The major part of this book develops and applies a method for evaluating integrals analytically and expressing the result either as infinite series or as a sum of generalized hypergeometric functions. At first look, the method to evaluate integrals is formidable, and the final results look very complicated. It has been suggested that results from a numerical integration can be obtained more quickly. One has to overcome these prejudices. It is true that the formalism is difficult to learn because it uses mathematical techniques that are generally unfamiliar to most scientists, but that was not a valid excuse for not learning other difficult techniques, which are part of a standard scientific education. If
the formalism produces results that are useful, one should be willing to overcome
the initial difficulty.

This technique has indeed proved to be very useful! The expressions for the
power series, although lengthy to write down, are easily and quickly evaluated
using the recursion relation for gamma functions. Recently several computer al-
gebra programs have acquired the ability to evaluate generalized hypergeometric
functions, to which the power series are equivalent. In this context the results
are no more difficult to evaluate and plot for specific cases than results expressed
in terms of more familiar functions such as sinusoids and exponentials. The analy-
tic form of the answer uncovers the natural parameters of a problem and gives
one insight into how important a parameter is — an insight that is difficult to
develop with numerical techniques. Integrands that contain the difference of two
almost equal quantities, a condition that leads to difficulties in numerical inte-
gration, are handled in the complex plane by simply deforming an integration
path past a pole. Because the technique is algorithmically based, one can de-
velop a computer algebra program that automatically evaluates these integrals,
in which case the user would not need to learn the details of the technique to
get an analytic answer and to generate curves for specific ranges of parameter
values. The development of such a program is being investigated. Just as sci-
tific calculators made tables of trigonometric functions and logarithms obsolete,
such a computer program would do the same to most material in integral tables.
It would also allow one to evaluate many integrals that are not in the integral
tables.

This technique was originally developed to evaluate integrals one encounters
when solving problems of electromagnetic wave propagation in turbulence. The
technique enables one to solve problems in terms of integrals that are generated
with filter functions that multiply the turbulence spectrum. Problems that take
tens of days to solve when one starts from first principles can often be solved in less
than an hour with appropriate filter functions and Mellin transform techniques.

The techniques given in this book were developed over several years in the
high-energy beam-control and propagation group at MIT Lincoln Laboratory.
I would like to thank MIT Lincoln Laboratory for providing the opportunity
to work on challenging problems for which this technique was developed, for
the freedom to pursue research in this area, and for the chance to interact with
people interested in helping to develop this technique. This work was sponsored
by the Strategic Defense Initiative through the Department of the Air Force
under Contract No. F19628-90-C-0002.

I chose to solve many of the problems to illustrate the method developed in
this book. I did not do a comprehensive literature search to see if these problems
were previously solved. I apologize if I have left out relevant references.

Several people provided ideas that enabled me to develop the technique. Lee
Bradley first suggested the possible usefulness of Mellin transform techniques
and the existence of the Marichev text. He also suggested the use of Gegenbauer
polynomials in addressing the anisoplanatism problem. The technique of eval-

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 17 Sep 2020
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use
uating integrals in several complex planes was developed in collaboration with John Shelton.

Many people had a hand in suggesting what material to include, and how it should be organized. I would like to especially thank Jonathan Shonfeld for carefully reading the first draft and suggesting many organizational changes. I have had many suggestions from Robert Kramer, Hernan Praddaude, Ronald Parenti, and Charles Primmerman. Fred Knight was very helpful in converting the text into \LaTeX. Jim Eggert was particularly helpful since he was willing to read the text during several stages of the evolution of this book and made many useful suggestions. The series editor Professor Hermann Haus and the Springer-Verlag editor Helmut Lotsch made helpful suggestions on how the material should be presented. I want to thank Bill Breen, Ed Sullivan, Dave Tuells, Kevin Walsh, and their staff for producing the figures, converting them into Postscript, and printing the final copy. Sue Richardson and Katharine Krozel provided useful editorial help.

A book like this that contains so much new material and has so many complicated equations is very difficult to make error free. I would appreciate hearing any comments you have on the material or errors you have found in the text. My E-mail address is Sasiela@ll.mit.edu.

Writing a book takes a tremendous investment in time and energy that is no longer available for home life. I thank my wife Joan for being so understanding during this period.

October, 1993
Richard Sasiela
Lexington, Massachusetts

Comments about the second edition:

The first edition was published by Springer-Verlag. This edition corrects typographical errors in that edition. The treatment of tilt of uncollimated beams was incorrect in Sections 4.5, and 4.6 because a γ that should have multiplied the diameter was missing. It was pointed out by Jan Herrmann that it was necessary to use the local tilt in these sections.

As pointed out by Byron Zollars, there were some internal inconsistencies with 2π factors in the development of the general formula for variance due to turbulence. This affected some intermediate formulas in Chapters 2 and 3.

Since the propagation of focused beams has become more important, this case has been treated more carefully and extensively.

The derivation of the basic equations for variance and the removal of Zernike terms is developed more carefully.

Many problems can be solved by using the filter functions for variance. For more complicated problems one needs to start with the filter functions for phase or log-amplitude and develop the variance filter functions from these. Several examples on how to do this are illustrated.
Computer algebra programs have become more powerful and many of the integrals can now be solved with these programs. Solving these problems by hand is time consuming and error prone. Having these programs to do this part of the analysis is very helpful.

Typically, one is interested in the Strehl ratio. Analytic solutions are obtained for the variances. The approximations for the Strehl ratio using the phase variance do not give accurate results for many cases of interest. The use of filter functions in the structure function is elaborated in this edition. The problem of finding the Strehl ratio when the structure function is a function of aperture position is addressed. Examples of solving for the Strehl ratio numerically are given.

Chapter 6 of the original book discussed other uses for Mellin transforms. This chapter was not needed for the development of the subsequent chapters. Since I have nothing new to add on this subject, the chapter was eliminated because of the additional topics that were addressed.

I want to thank Ronald Parenti who I have worked with on turbulence problems for over 30 years. Our recent collaboration with Professors Larry Andrews and Ronald Philips has been very productive.

Recent computer code results indicate that the calculation of the scintillation for finite beams based on Rytov theory is in error. The beam wave theory predicts a dip in the scintillation index for Fresnel number around unity. Code results predict a smaller dip. Apparently, the perturbation theory that starts with a diffraction-limited beam on axis is incorrect. In the region of error the tilt can be comparable to the beam diameter. In addition, the focus term caused by turbulence causes a change in beam size, which violates the diffraction-limited assumption. Various authors have corrected the Rytov scintillation by separately including the effects of jitter and beam spreading.

I want to thank Seth Trotz for solving the many problems encountered in converting this document into \LaTeX. Also, I want to thank Eric P. Magee and his students for pointing out errors in the draft copy of this edition.

Beth Huetter of SPIE helped to correct errors and produce a uniform format. This work was sponsored by the Department of the Air Force under Air Force Contract FA8721-05-C-0002. Opinions, interpretations, conclusions, and recommendations are those of the author and are not necessarily endorsed by the United States Government.

February, 2007

Richard Sasiela

Lexington, Massachusetts
Glossary

\((a)_k \) Pochhammer symbol
\(A(\mathbf{\kappa}, z) \) Amplitude of second wave
\(B_\phi (d) \) Phase correlation function
\(c \) normalized wavenumber, speed of light
\(C_2^2 \) Turbulence strength
\(C_\kappa^\lambda(x) \) Gegenbauer polynomial
\(D \) Aperture diameter
\(D_i \) Inner diameter of annulus
\(D_s \) Diameter of a finite source
\(\mathcal{D}(\mathbf{d}, \rho) \) Structure function of total turbulence
\(D_c \) Characteristic source diameter for scintillation averaging
\(\mathcal{D}(r) \) Structure function of velocity
\(\mathcal{D}_n(r) \) Structure function of atmospheric density
\(\mathcal{D}_\phi (\mathbf{d}, \rho) \) Structure function of phase
\(\mathcal{D}_\chi (\mathbf{d}, \rho) \) Structure function of log-amplitude
\(E_n(\mathbf{\kappa}, z) \) Normalized axial correlation function of turbulence
\(f(\kappa) \) Normalized turbulence spectrum
\(F(\Omega_1, \ldots, \Omega_k) \) Fresnel number
\(F_{\gamma \kappa} \) Aperture filter function
\(F_{\gamma} \) Generalized hypergeometric function
\(g(k) \) Hill Spectra
\(g(\kappa) \) Aperture weighting function
\(G(\gamma \kappa) \) Complex aperture filter function
\(G_{p,q}^{m,n} \left[\begin{array}{c|c} z & a_1, \ldots, a_p \\ b_1, \ldots, b_q \end{array} \right] \) Meijer’s G-function
\(H \) End altitude of propagation path
\(H_{p,q}^{m,n} \left[\begin{array}{c|c} z & (a_1, \alpha_1), \ldots, (a_p, \alpha_p) \\ (b_1, \beta_1), \ldots, (b_q, \beta_q) \end{array} \right] \) Fox’s H-function
\(J_\nu(x) \) Bessel function
\(\mathbf{k} \) Three-dimensional propagation vector \((\mathbf{\kappa}, k_z)\)
XVI Glossary

\(k_0 \) \(\frac{2\pi}{\lambda} \), wavenumber

\(k_z \) Propagation vector along propagation direction

\(K(\alpha) \) Modulation transfer function of a circular aperture

\(K_{\nu}(x) \) Modified Bessel function of the third kind

\(L \) End point of propagation path

\(L_i \) Inner scale with definition \(L_i = \frac{2\pi}{\kappa_i} \)

\(L_{in} \) Inner scale with definition \(L_{in} = 5.92/\kappa_i \)

\(L_o \) Outer scale

\(n(\mathbf{r}) \) Variation of air density with position

\(P(\gamma, \kappa, z) \) Diffraction parameter

\(r_o \) Coherence diameter of a plane wave

\(r_{os} \) Coherence diameter of a spherical wave

\(R_o \) Radius of curvature of beam wave at the source

\(s, s_n, t \) Complex variables

\[S(p_1, \ldots, p_k) = \sum_{n_1=p_1}^{\infty} \cdots \sum_{n_k=p_k}^{\infty} \frac{(-1)^{n_1+\cdots+n_k}}{n_1! \cdots n_k!} \]

\(S_\phi(\omega) \) Power spectral density of phase

\(S_\chi(\omega) \) Power spectral density of log-amplitude

\(SR \) Strehl ratio

\(t \) Time or second complex variable

\(\mathbf{u}_z \) Unit vector in propagation direction

\(U(x) \) Heaviside unit step function

\(v_n \) \(n^{th} \) velocity moment of turbulence

\(v_g \) Wind ground speed

\(v(h) \) Wind speed as a function of height

\(W_o \) \(1/e^2 \) radius of beam wave

\(Z(m,n) \) Zernike polynomial

\(\alpha(h) \) Normalized atmospheric density versus altitude

\(\gamma \) Propagation parameter

\(\Gamma[x] \) Gamma function

\(\delta(x-a) \) Dirac delta function

\(\Delta n_0 \) Difference of refractive index between two colors

\(\theta_o \) Isoplanatic angle

\(\theta_s \) Characteristic source angle for scintillation reduction

\(\theta_s \) Angle subtended by a finite source

\(\kappa \) Transverse wavenumber

\(\kappa_i \) Wavenumber of inner scale

\(\kappa_o \) Wavenumber of outer scale
λ Wavelength
μ_m m^{th} turbulence moment
μ_{m}^+ m^{th} upper turbulence moment
μ_{m}^- m^{th} lower turbulence moment
ν(κ, z) Fourier transform of refractive index variations
ρ Two-dimensional transverse spatial vector
τ Time delay between measurement and correction
φ(ρ, z) Phase variation due to turbulence
φ_R(ρ, z) Phase related quantity
Φ_1(ρ, z) Total variation of the turbulence fluctuations
ψ Psi or digamma function
χ(ρ, z) Log amplitude due to turbulence
χ_R(ρ, z) Log-amplitude related quantity
ω Radian frequency of turbulence variation
ζ(s) Riemann zeta function