References

Appendix
Reflection Error Nomograms

1 μm thermometer, 750 °C to 1050 °C

Emissivity
1 μm thermometer, 800 °C to 1000 °C
1 μm thermometer, 750 °C to 950 °C
3.9 \, \mu m \, \text{thermometer, 750 °C to 1050 °C}
3.9 μm thermometer, 400 °C to 800 °C

Reflection Error Nomograms 155
3.9 μm thermometer, 500 °C to 700 °C
Index

absorption coefficient, 21, 62, 63, 65
 effective, 63–64
absorption lines, 21, 24, 34, 62
absorptivity, 15
adding in quadrature. See quadrature
air purge, 75
ambient temperature, 106
angle
 azimuthal, 17, 18
 polar, 17, 18
aperture, 25, 108, 109
 blackbody cavity, 102
 solid-angle-defining. See aperture
 stop
 target-defining. See field stop
aperture stop, 25, 74
approximating equation, 79
atmosphere, 65
 reducing, 3
atmospheric
 absorption and emission, 3, 20–22,
 114
 scattering, 22, 71
bandwidth, 24, 26, 34, 57, 62
bi-directional reflectance distribution
 function, 17–20, 42, 59, 62, 116, 141
blackbody, 8, 10, 14, 15, 31, 44, 51, 71
blackbody cavity, 29, 73, 102–4, 107
 effective emissivity, 102–4, 107
 intrinsic emissivity, 102
 stability, 108
 temperature uniformity, 104, 108
blackbody radiation, 9–15, 102, 135
Boltzmann constant, 12
BRDF. See bi-directional reflectance
distribution function
 calibration, 25, 32, 33, 101–12
certificate, 108
data, 110
example, 109–12
methods, 105–6
points, 106, 107, 111
procedure, 106–9
 total uncertainty, 109
carbon dioxide, 21, 62
catalyst poisoning, 1
CCD. See charge-coupled device
charge-coupled device, 33
cleaning, 75, 106
coffins, 117
coke, 1, 42, 132
comparison, 107
correction, 105, 108, 111
conduction, 6, 8
certainty interval, 83, 97
contact thermometer, 3, 7, 43, 104, 105
convection, 6–7, 8, 9, 104
 forced, 7
 natural, 6
correction, 105, 108, 111
coverage factor, 83
data analysis procedure, 116
detector, 25, 29, 75
temperature sensitivity, 78
devitrification, 74
diffraction, 76
dirt, 74
dispersion of measurements, 82
distribution, 82
 combined, 84
drift, 106
dual-wavelength thermometer. See ratio
thermometer
dust, 22, 71, 75, 106
dynamic range, 13
effective absorption coefficient, 63–64
effective background temperature, 34, 48, 59–60, 94, 115
effective cavity reflectivity, 103
electromagnetic spectrum, 9, 14
electromagnetic waves, 7, 9
electron gas, 6
electronic compensation, 78
emissivity, 15–16, 34, 35, 39–47, 92
angular dependence, 42–43, 97, 141
compensation, 51
distribution, 45
effective, 29, 30, 31, 51, 53, 59, 124
from BRDF, 20
infrared, 16
instrumental, 28–29, 43, 44, 48, 50, 51, 53, 73, 106, 113
measurement, 43–46, 93
model, 36
spectral, 15, 40, 51, 116, 121
surface finish, 40
total, 7, 8, 14
tube material, 40
wavelength dependence, 42
emitted radiation, 49
equivalent wavelength, 35
error
ambient temperature dependence, 78
atmospheric absorption and emission, 62–70, 118
calibration, 105
emissivity, 39–47
flames, 70–71
gold-cup pyrometer, 32
in reading, 3
laser pyrometer, 34
measured signal, 28
multi-wavelength thermometer, 37
poor focus, 76
ratio thermometer, 35
reflection. See reflection error
scattering, 71
signal linearization, 79
size-of-source effect, 74–77, 107
temperature, 28, 46
thermal imager, 33
window transmission, 72
expanded uncertainty, 83
field of view, 23, 25, 33, 71, 74, 75, 109
nominal, 74, 75
obscurering, 77
overfilling, 75, 77, 107, 115
underfilling, 35
field stop, 25, 74, 77
filter, 25
flame filter, 136
flames, 9, 45, 70, 75, 129
gas, 90, 113, 127
oil, 90, 133, 135
fluctuations, 99, 114
flue gas, 3, 9, 30, 33, 113
fluorescent lights, 107, 129
focal plane array, 33
freely radiating, 17, 28, 35, 46, 50
fuel gas, 71, 127
f-stop, 25
gas concentration, 65
gas temperature, 63, 65, 68
geometric view factor, 59, 60, 94, 116, 123
calculation, 61–62
glare, 75
gold-cup pyrometer, 29–33, 44, 101
gonioreflectometer, 18
graybody, 16, 28, 35, 37
heat pipe, 104
heat shield, 78
heat transfer, 5–9
histogram, 82, 126
horizontal tubes, 136, 141
hot spot, 132
incandescent lamp, 43, 47, 72, 106
Inconel®, 40, 103
infrared, 9, 10, 41, 62, 72, 107
inter-element reflections, 77
international temperature scale, 101
inter-reflections, 49, 57
isotropically diffuse, 17, 34, 43, 59, 116
kelvin, 12, 48
kinetic energy, 6
Kirchhoff’s law, 15, 21, 72

laser pyrometer, 34, 46, 55, 63
lattice vibrations, 6
least-squares fitting, 108
lens, 25, 75, 106
level of confidence, 83
lookup table, 79

mean, 82
measurement equation, 48–50, 53, 88, 96
uncertainty, 81
measurement procedure, 113–16
measurement strategies, 50–55
methane, 71
mirror, 25
misalignment, 77
monochromatic approximation, 26–28, 48
multi-wavelength thermometer, 36–37

natural gas, 71, 117
nomogram, 55–57, 92, 94, 96
normal distribution, 83

optical brightness. See spectral radiance
optimum wavelength, 52, 58, 99–100, 133
oxidation, 17, 40, 41, 42, 93, 122

path length, 21, 65, 68, 118
peak wavelength, 12
Planck, Max, 11
Planck constant, 12
Planck’s law, 10–12, 23, 55
approximations, 12–14
poor focus, 76
propane, 71

quadrature, 84, 96, 108

radiance temperature, 28, 29, 36, 59, 65, 89, 101, 114
mean, 122
uncertainty, 122
radiation constant
first, 11
second, 11
radiation heat transfer, 7–8
radiation thermometers, 23–37
radiometer, 23
imaging, 23
non-imaging, 23
ratio thermometer, 35–36
Rayleigh-Jeans law, 14
reference thermometer, 101, 105, 106
reflectance, 16, 19, 34, 41, 44
Fresnel, 42, 43
of gold, 31
reflected radiation, 3, 16–20, 36, 49
shielding, 48
reflection error, 17, 41, 47–62, 64, 70, 99, 115
flames, 71
gold-cup pyrometer, 29
laser pyrometer, 34
thermal imager, 33
reflectivity, 16, 102
reformer tubes, 20
refractory wall, 9, 75
remnant life, 1
response time, 113, 115
retro-reflection, 18, 34, 46
risk, 2, 81
rule of thumb, 47, 104
scale, 41, 42
scattering, 74
scratches, 74, 75, 106
Seebeck coefficient, 3
sensitivity coefficient, 85, 86
short-term variations, 89
sight tube, 75, 77
signal, 25, 27, 48, 63, 76
gold-cup pyrometer, 30
size-of-source effect, 33, 74–77, 89, 106, 113
diffraction, 76
misalignment, 77
parameter, 76
poor focus, 76
scattering, 75–76
smoke, 71
solid angle, 62, 134
soot, 71, 90, 133
spectral radiance, 10, 15, 27, 48, 113
of blackbody, 11, 23
maximum, 12
spectral responsivity, 24, 25, 62, 63, 88
temperature sensitivity, 78
spectral window, 21, 62
spectral-band thermometer, 24–29, 33,
39, 113
specular, 17, 121
speed of light, 12
stability, 106
standard deviation, 83
Stefan-Boltzmann constant, 14
Stefan-Boltzmann law, 31
sun, 17, 43, 48, 72, 75
surrounding objects, 17, 47, 59, 116,
122
temperature
distribution, 1, 58, 70, 104, 121
gradient, 126
non-uniformity, 1, 58, 70
uniformity, 125
thermal conductivity, 6, 8, 32
thermal contact, 3, 9
thermal imager, 33–34, 55, 113, 136
thermal radiation, 9
thermal resistance, 42
thermocouple, 3, 6, 7, 9, 43, 104, 105
insulation, 9
junction, 44
thermography, 33
total energy, 14
total radiance, 14, 15
traceability, 101
transmittance, 16, 22
window, 72
tube-skin cooling, 114
two-color thermometer. See ratio
thermometer
ultraviolet catastrophe, 11, 14
uncertainty, 1, 39, 69, 79, 81–100, 116
absorption and emission, 90, 91
ambient temperature dependence,
108
calibration, 89, 95, 106, 108
combining, 85
corrected temperature, 88–100
definition, 82
effective background temperature,
94–96
emissivity, 40, 43, 47, 92–94, 122,
134
expanded, 83
flames, 90, 135
measured temperature, 47, 52, 58
propagating, 85–88
scattering, 90
size-of-source effect, 108
statement, 101
target temperature, 88–92
total, 87, 96–99, 116
vignetting, 89
window transmission, 89, 95
unipod, 115
vacuum, 7, 12
variance, 84
viewing angle, 42, 43, 93, 114, 143
vignetting, 77, 89, 115, 133
visual inspection, 106
water vapor, 21, 30, 62, 71, 113, 118
Wien’s displacement law, 12, 24, 47
Wien’s law, 12, 55
window, 116
absorption, 74
materials, 72
quartz, 29, 30, 73
transmittance, 72
viewing through, 72–74, 89
Peter Saunders received a Ph.D. in physics in 1993 from Massey University in Palmerston North, New Zealand. In the same year he began his career as a metrologist working for the Measurement Standards Laboratory of New Zealand, his country’s national measurement institute. His field of metrology is radiation thermometry, where he carries out research in both industrial applications and more fundamental aspects of temperature measurement.

He has developed the measurement solutions described in this book for the petrochemical industry into a furnace survey service operating within Australasia and SE Asia. This service includes measurement training and the supply of customized software for individual plants. He also runs annual training courses for New Zealand industry on general temperature measurement and calibration. He has published more than 30 scientific papers on various aspects of radiation thermometry and was awarded the 2004 Cooper Medal by the Royal Society of New Zealand for developing a theoretical description of the underlying physical basis for equations used in the calibration of radiation thermometers.

He is a member of the Radiation Thermometry Working Group of the Consultative Committee for Thermometry, which operates under the International Committee for Weights and Measures and is responsible for matters relating to the establishment, realization, and improvement of the international temperature scale.