References

95a. C. Grein, private communication, 2002.
Index

absorption coefficient, 49–51
absorption quantum efficiency, 7
α-silicon thermal detector technologies, 11
annealing, 65–66
antenna structures, 22
APD. See avalanche photodiodes.
Auger lifetime, 155–163
Auger minority carrier lifetime properties, 73–74
Auger recombination, 33–34
Auger transitions, 56
Avalanche photodiodes (APDs), 109
high-gain, 147–148
theory, 109

Background limited performance (BLIP), 6, 93, 143
band offsets and strain, 47–48
band structure, 67
bandgap engineering, 19
bandgap materials, direct, 57
bandgap states, tunneling via, 84–85
binary compounds, 35–37
indium antimonide, 35–37
BLIP. See background limited performance.
bump-bonded ion implant architecture, 77

coefficient of thermal expansion (CTE), 74–75
CTE. See coefficient of thermal expansion.
cutoff wavelengths, 144–145
dark current
HgCdTe diodes and, 82–86
Mathcad program modeling, 151–163
Auger lifetime, 155–163
minority carrier lifetime modeling, 153–154
n-type, 153
p-type, 152–153
model
diffusion current, 136
infrared devices and future development of, 135–139
N-side, 136–137
P-side, 137–139
PbSnTe direct bandgap alloy and, 43–44
total, 85–86
dead voltage model, 121–125
depletion current, 84
detector contacts, HOT theory and, 103
detector data, HOT theory and, 101–103
detector performance, 82
diffusion current, 83, 136, 137
diode dark current models, 34–35
direct bandgap materials, 57–59
HgCdTe, 57
InSb, 57–58
PbSnTe, 58–59
superlattices
type II, 59
type III, 59
direct tunneling, 85
dislocation density, 74–75
DLHJ diodes. See double layer heterojunction diodes.
doping, p-type mercury cadmium telluride and, 40–41
double layer heterojunction diodes (DLHJ), 38
architecture, 76–77
double-layer p⁺/n heterojunctions. See double layer heterojunction diodes.
DRS manufacturing, 89–91
HDVIP technologies, 89
VIP technologies, 89

EAPDs. See electron avalanche photodiodes.
effective mass, 51–52
electron avalanche photodiodes, 109
electron impact ionization rate, 115–120
Kronig-Penney model, 118
electron transport, HgCdTe and, 69–70
extrinsic semiconductor, 16–18
extrinsically doped p-type mercury cadmium telluride, 40
File:///C:/Users/Anon/Documents/Texts/Spie/170 Index
double layer heterojunction diodes (DLHJ), 38
architecture, 76–77
double-layer p⁺/n heterojunctions. See double layer heterojunction diodes.
DRS manufacturing, 89–91
HDVIP technologies, 89
VIP technologies, 89

EAPDs. See electron avalanche photodiodes.
effective mass, 51–52
electron avalanche photodiodes, 109
electron impact ionization rate, 115–120
Kronig-Penney model, 118
electron transport, HgCdTe and, 69–70
extrinsic semiconductor, 16–18
extrinsically doped p-type mercury cadmium telluride, 40

Focal plane array (FPA), 2
high density, 143
multicolor, 141–143
multispectral, 141–143
FPA. See focal plane array.

Glow discharge mass spectroscopy, 63

HDVIP™ architecture, 77–81
liquid phase epitaxial material growth, 79
technologies, 89
HgCdTe annealing, 65–66
HgCdTe avalanche photodiodes, room-temperature, 129–131
HgCdTe device architecture, 75–81
bump-bonded ion implant, 77
DLHJ, 76–77
vertically integrated photodiode, 77–81
HgCdTe diode dark current, Mathcad program modeling, 151–163
Auger lifetime, 155–163
minority carrier lifetime modeling, 153–154
n-type, 153
p-type, 152–153
HgCdTe diodes, dark current and, 82–86

sources of,
depletion current, 84
diffusion current, 83
surface generation current, 84
total dark current, 85–86
tunneling, 84–85

HgCdTe electron avalanche photodiodes (EAPDs), 109–137
APD theory, 109
empirical model for, 121–129
dead voltage model, 121–125
McIntyre’s model, 110–112
Monte Carlo modeling, 131–133
physics of, 112–120
electron impact ionization rate, 115–120
high energy scattering rates, 113–115

HgCdTe materials, 61–91
detector performance, 89–91
glow discharge mass spectroscopy, 63
growth of, 61–65
Liquid phase epitaxy (LPE), 61, 62–64
Metal–organic chemical vapor deposition (MOCVD), 61, 65
Metal–organic vapor phase epitaxy (MOVPE), 65
Molecular beam epitaxy (MBE), 61, 64–65

physical properties, 74–75
coefficient of thermal expansion, 74–75
dislocation density, 74–75
lattice constant, 74

properties of, 61–75
band structure, 67
minority carrier lifetime properties, 73–74
Auger, 73–74
radiative, 73–74
Shockley–Read, 73–74

optical properties, 67
transport, 67–73
electron transport, 69–70
hole transport, 71–73

ROIC requirements, 81–89
Index

HgTe/CdTe superlattices, 48
interdiffusion, 48
detector contacts, 103
detector data, 101–103
options, 103–105
high temperature operations, infrared
devices and, 145–148
high-gain APDs, 147–148
High temperature superconductor (HTC), 26–27
hole transport, HgCdTe and, 71–73
HOT. See high operating temperature.
HTC. See high temperature superconductor.
impact ionization rate, 115–120
Indium antimonide (InSb), 35–37
IR detection material, 57–58
Infrared (IR) detectors, 1–3
absorption quantum efficiency, 7
DRS manufacturing, 89–91
eyear types, 1
first generation models, 1
focal plane array (FPA), 2
future development of, 135–148
dark current model, 135–139
high-density FPA, 143
higher operating temperatures, 145–148
low background operation, 143
multicolor FPA, 141–143
multispectral FPA, 141–143
separate absorption and detection
structure, 139–141
required properties, 135
future models, 2
performance criteria, 5–11, 89–91
photonic type, 5–9, 13–29
scanning arrays, 2
second generation models, 1–2
sensitivity of, 7–9
noise equivalent irradiance, 7
signal flux, 7
thermal detectors, 9–11
time, delay and integrate (TDI)
techniques, 2
InSb. See indium antimonide.
interdiffusion, HgTe/CdTe superlattices
and, 48
intrinsic direct bandgap semiconductor,
13–16, 27, 31–59
binary compounds, 35–37
diode dark current models, 34–35
materials, HgCdTe, 57
InSb, 57–58
PbSnTe, 58–59
type II superlattices, 59
minority carrier lifetime, 32–34
PbSnTe, 42–44
ternary alloys, 37–42
type II superlattices, 53–57
type III superlattices, 45–53, 59
IR. See infrared.
ionization rate, 115–120
Kronig–Penney model, 118
lattice constant, 74
Liquid phase epitaxy (LPE), 61,
62–64, 79
low background operation, 143
LWIR 14 μm at 40 K, 143–144
25 μm cutoff wavelength, 144–145
LPE. See liquid phase epitaxy.
LWIR
14 μm at 40 K, 143–144
minority carrier lifetimes and, 56
spectral bands, 37
majority carrier, 5–7
detection, photoconductive, 5
Mathead programming modeling for dark
current, 151–163
MBE. See molecular beam epitaxy.
McIntyre’s avalanche photodiode model,
110–112
mercury cadmium telluride, 37–41
double layer heterojunction
diodes, 38
LWIR spectral bands, 37

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 16 Mar 2020
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use
mercury cadmium telluride (Continued)
MWIR spectral bands, 37
n-type, 37–39
p-type, 39–41
Metal organic chemical vapor deposition (MOCVD), 61
Metal organic vapor phase epitaxy (MOVPE), 65
microlenses, 22
minority carrier devices, 5–7
detection, responsivity and noise, 5
lifetime, 32–34
Auger recombinations, 33–34
transitions, 56
LWIR, 56
MWIR, 56
PbSnTe direct bandgap alloy and, 43–44
properties
Auger, 73–74
HgCdTe and, 73–74
radiative, 73–74
Shockley–Read, 73–74
radiative recombination, 32–33
Shockley–Read recombination, 34
type II superlattices and, 54–57
type III superlattices and, 52–53
misfit dislocations, 48–49
MOCVD. See metal organic chemical vapor deposition.
MOVPE. See metal organic vapor phase epitaxy.
modeling, Mathcad program for dark current, 151–163
Molecular beam epitaxy (MBE), 61, 64–65
Monte Carlo modeling, 131–133
multicolor FPA, 141–143
multispectral FPA, 141–143
MWIR
minority carrier lifetimes and, 56
spectral bands, 37

Noise equivalent irradiance (NEI), 7
Noise equivalent temperature (NEΔT), 9
noise, minority carrier detection and, 5
N-side, dark current model and, 136–137
N type
dark current Mathcad program modeling, 153
mercury cadmium telluride and, 37–39
1/f noise, 87–89
operating temperatures, infrared devices and, 145–148
optical properties, 67
P type dark current Mathcad program modeling, 152–153
PbSnTe direct bandgap alloy, 42–44
dark currents, 44
as IR detection material, 58–59
minority carrier lifetime, 43–44
photon conductive detection, 5
photon detectors, 5–9, 95–105
background limited performance, 6
extrinsic semiconductor, 16–18
high temperature superconductor, 26–27
HOT theory, 95–101
detector contacts, 103
data, 101–103
intrinsic direct bandgap semiconductor, 13–16
majority carrier, 5–7
minority carrier, 5–7
quantum well types, 18–23
silicon Schottky barrier type, 23–25
thermal generation rate, 6–7
photon uncooled detection vs. thermal detection limits, 105–107
P-side, dark current model and, 137–139
p-type mercury cadmium telluride, 39–41
eextrinsically doped p-type, 40
general doping, 40–41
vacancy-doped p-type, 39–40
Quantum well IR photodetectors (QWIPs), 18–23
bandgap engineering, 19
NEI. See noise equivalent irradiance.
NEΔT. See noise equivalent temperature.
superlattice, 18
thermal generation rate, 22
QWIPs. See quantum well IR photodetectors.
radiative lifetime, 153–154
radiative minority carrier lifetime properties, 73–74
radiative recombination, 32–33
resonant structures, 22
responsivity, minority carrier detection and, 5
ROIC requirements, 81–89
detector performance, 82
HgCdTe diodes, 82–86
1/f noise, 87–89
room-temperature HgCdTe APD performance, 129–131
SAD. See separate absorption and detection.
SB. See Schottky barriers.
scanning arrays, 2
Shockley–Read minority carrier lifetime properties, 73–74
Schottky barriers (SB), 23–25
semiconductors extrinsic, 16–18
intrinsic direct bandgap, 13–16, 31–59
PbSnTe bandgap alloy, 42–44
separate absorption and detection (SAD) structure, 139–141
Shockley–Read recombination, 34
signal flux, 7
Silicon Schottky barrier (SB) detectors, 23–25
superlattices bandstructure, 45–47
HgTe/CdTe, 48
type II, 53–57, 59
type III, 45–53, 59
types, 18–19
surface generation current, 84
TDI. See time, delay and integrate.
ternary alloys, mercury cadmium telluride, 37–41
thermal detection, 93–95
limits vs. photon uncooled detection, 105–107
thermal detectors, 9–11
noise equivalent temperature, 9
technologies α-silicon, 11
thin-film ferroelectrics, 11
vanadium oxide, 11
thermal generation rate, 6–7, 22
antenna structures, 22
microlenses, 22
resonant structures, 22
thin film ferroelectrics, 11
Time, delay and integrate (TDI) techniques, 2
total dark current, 85–86
transport properties, HgCdTe and, 67–73
tunneling via bandgap states, 84–85
tunneling, direct, 85
type II superlattices, 53–57, 59
minority carrier lifetime, 54–57
Auger transitions, 56
type III superlattices, 45–53, 59
absorption coefficient, 49–51
band offsets and strain, 47–48
bandstructure, 45–47
effective mass, 51–52
HgTe/CdTe, 48
minority carrier lifetime, 52–53
misfit dislocations, 48–49
uncooled detection, 93–107
BLIP performance, 93
photon, 95–105
thermal detection limits vs., 105–107
thermal, 93–95
vacancy-doped p-type mercury cadmium telluride, 39–40
vanadium oxide thermal detector technologies, 11
vertically integrated photodiode (VIP), 77–81, 89
VIP. See vertically integrated photodiode.
Dr. Kinch, an internationally known specialist in IR device and materials physics, is the Chief Scientist at DRS Infrared Technologies located in Dallas, Texas. He was educated at Wadham College, Oxford University, where he took a first-class degree in physics in 1960. He subsequently studied at the Clarendon Laboratory under Dr. B. V. Rollin and obtained a D. Phil. degree in 1965. In 1966 he joined the Central Research Laboratories of Texas Instruments, where he was engaged in research into the physics of far-infrared materials. He transitioned to infrared materials in 1969 and thereafter became fully embroiled in the many facets of the physics of HgCdTe. He was elected a TI Research Fellow in 1985 and became the leader of the Sensor Physics Branch in the Sensors and Infrared Laboratory (part of TI’s Corporate R&D Laboratory) until the demise of TI’s Central Research Laboratories in the mid-1990s. At that time, the infrared R&D effort was transitioned into TI’s Defense Electronics Group, which was later acquired by Raytheon in 1997. Upon Raytheon’s further acquisition of Hughes Aircraft Corporation, the Dept. of Justice mandated the divestment of the original TI IR sensors group to DRS Technologies in 1998. Dr. Kinch subsequently became Chief Scientist of DRS Infrared Technologies in 2000.

For the past 40 years, he has been engaged in (and published seminal papers on) all facets of HgCdTe material, processing, and detector research and development for first-, second-, and third-generation IR systems. He has authored, or co-authored, in excess of 200 publications, mostly in the open literature, in internationally recognized journals, and has been awarded several patents in the field of IR sensors. In 1987, together with D. D. Buss and R. A. Chapman, he received the IEEE Jack A. Morton Award for outstanding work in semiconductor devices, involving their research into HgCdTe monolithic IR charge-coupled and charge-injection devices. Dr. Kinch was elected a Fellow of the American Physical Society in 1988 and a Fellow of the Military Sensors Symposium in 2002. He is currently engaged in an effort to increase the operating temperature of HgCdTe detectors of all cutoff wavelengths into the uncooled range, as well as programs to fully develop the capability of HgCdTe electron avalanche photodiodes for all regions of the IR spectrum.