FUNDAMENTALS OF

Infrared Detector Materials
Tutorial Texts Series

- Matrix Methods for Optical Layout, Gerhard Kloos, Vol. TT77
- Fundamentals of Infrared Detector Materials, Michael A. Kinch, Vol. TT76
- Bioimimcescence for Food and Environmental Microbiological Safety, Lubov Y. Brovko, Vol. TT74
- Introduction to Image Stabilization, Scott W. Teare, Sergio R. Restaino, Vol. TT73
- Introduction to Confocal Fluorescence Microscopy, Michiel Müller, Vol. TT69
- Artificial Neural Networks: An Introduction, Kevin L. Priddy and Paul E. Keller, Vol. TT68
- Basics of Code Division Multiple Access (CDMA), Raghuveer Rao and Sohail Dianat, Vol. TT67
- Optical Imaging in Projection Microlithography, Alfred Kwok-Kit Wong, Vol. TT66
- Metrics for High-Quality Specular Surfaces, Lionel R. Baker, Vol. TT65
- Field Mathematics for Electromagnetics, Photonics, and Materials Science, Bernard Maxum, Vol. TT64
- High-Fidelity Medical Imaging Displays, Aldo Badano, Michael J. Flynn, and Jerzy Kanicki, Vol. TT63
- Diffractive Optics—Design, Fabrication, and Test, Donald C. O’Shea, Thomas J. Suleski, Alan D. Kathman, and Dennis W. Prather, Vol. TT62
- Thin-Film Design: Modulated Thickness and Other Stopband Design Methods, Bruce Perilloux, Vol. TT57
- Optische Grundlagen für Infrarotsysteme, Max J. Riedl, Vol. TT56
- An Engineering Introduction to Biotechnology, J. Patrick Fitch, Vol. TT55
- Image Performance in CRT Displays, Kenneth Compton, Vol. TT54
- Modulation Transfer Function in Optical and Electro-Optical Systems, Glenn D. Boreman, Vol. TT52
- Fundamentals of Antennas, Christos G. Christodoulou and Parveen Wahid, Vol. TT50
- Basics of Spectroscopy, David W. Ball, Vol. TT49
- Resolution Enhancement Techniques in Optical Lithography, Alfred Kwok-Kit Wong, Vol. TT47
- Copper Interconnect Technology, Christoph Steinbrüchel and Barry L. Chin, Vol. TT46
- Fundamentals of Contamination Control, Alan C. Tribble, Vol. TT44
- Evolutionary Computation: Principles and Practice for Signal Processing, David Fogel, Vol. TT43
- Infrared Optics and Zoom Lenses, Allen Mann, Vol. TT42
- Introduction to Adaptive Optics, Robert K. Tyson, Vol. TT41
- Fractal and Wavelet Image Compression Techniques, Stephen Welstead, Vol. TT40
- Tissue Optics: Light Scattering Methods and Instruments for Medical Diagnosis, Valery Tuchin, Vol. TT38
FUNDAMENTALS OF

Infrared Detector Materials

Michael A. Kinch
Introduction to the Series

Since its conception in 1989, the Tutorial Texts series has grown to more than 70 titles covering many diverse fields of science and engineering. When the series was started, the goal of the series was to provide a way to make the material presented in SPIE short courses available to those who could not attend, and to provide a reference text for those who could. Many of the texts in this series are generated from notes that were presented during these short courses. But as stand-alone documents, short course notes do not generally serve the student or reader well. Short course notes typically are developed on the assumption that supporting material will be presented verbally to complement the notes, which are generally written in summary form to highlight key technical topics and therefore are not intended as stand-alone documents. Additionally, the figures, tables, and other graphically formatted information accompanying the notes require the further explanation given during the instructor’s lecture. Thus, by adding the appropriate detail presented during the lecture, the course material can be read and used independently in a tutorial fashion.

What separates the books in this series from other technical monographs and textbooks is the way in which the material is presented. To keep in line with the tutorial nature of the series, many of the topics presented in these texts are followed by detailed examples that further explain the concepts presented. Many pictures and illustrations are included with each text and, where appropriate, tabular reference data are also included.

The topics within the series have grown from the initial areas of geometrical optics, optical detectors, and image processing to include the emerging fields of nanotechnology, biomedical optics, and micromachining. When a proposal for a text is received, each proposal is evaluated to determine the relevance of the proposed topic. This initial reviewing process has been very helpful to authors in identifying, early in the writing process, the need for additional material or other changes in approach that would serve to strengthen the text. Once a manuscript is completed, it is peer reviewed to ensure that chapters communicate accurately the essential ingredients of the processes and technologies under discussion.

It is my goal to maintain the style and quality of books in the series, and to further expand the topic areas to include new emerging fields as they become of interest to our reading audience.

Arthur R. Weeks, Jr.
University of Central Florida
To

Rita and Betty
Contents

1 Introduction 1

2 IR Detector Performance Criteria 5
 2.1 Photon Detectors 5
 2.1.1 IR detector operating temperature 5
 2.1.2 IR detector sensitivity 7
 2.2 Thermal Detectors 9

3 IR Detector Materials:
 A Technology Comparison 13
 3.1 Intrinsic Direct Bandgap Semiconductor 13
 3.2 Extrinsic Semiconductor 16
 3.3 Quantum Well IR Photodetectors (QWIPs) 18
 3.4 Silicon Schottky Barrier Detectors 23
 3.5 High-Temperature Superconductor 26
 3.6 Conclusions 27

4 Intrinsic Direct Bandgap Semiconductors 31
 4.1 Minority Carrier Lifetime 32
 4.1.1 Radiative recombination 32
 4.1.2 Auger recombination 33
 4.1.3 Shockley–Read recombination 34
 4.2 Diode Dark Current Models 34
 4.3 Binary Compounds 35
 4.3.1 Indium antimonide: InSb 35
 4.4 Ternary Alloys 37
 4.4.1 Mercury cadmium telluride: Hg\textsubscript{1−x}Cd\textsubscript{x}Te 37
 4.5 Pb\textsubscript{1−x}Sn\textsubscript{x}Te 42
 4.5.1 Minority carrier lifetime 43
 4.5.2 Dark currents 44
 4.6 Type III Superlattices 45
 4.6.1 Superlattice bandstructure 45
 4.6.2 Band offsets and strain 47
 4.6.3 Interdiffusion in HgTe/CdTe superlattices 48
 4.6.4 Misfit dislocations 48
 4.6.5 Absorption coefficient 49
5 HgCdTe: Material of Choice for Tactical Systems

5.1 HgCdTe Material Properties
5.1.1 Material growth
5.1.2 HgCdTe annealing
5.1.3 HgCdTe properties

5.2 HgCdTe Device Architectures
5.2.1 DLHJ architecture
5.2.2 Bump-bonded ion implant architecture
5.2.3 Vertically integrated photodiode (VIP and HDVIP) architectures

5.3 ROIC Requirements
5.3.1 Detector performance: Modeling
5.3.2 Dark current in HgCdTe diodes
5.3.3 1/f noise

5.4 Detector Performance

5.5 HgCdTe: Conclusions

6 Uncooled Detection

6.1 Thermal Detection
6.2 Photon Detection
6.2.1 HOT detector theory
6.2.2 HOT detector data
6.2.3 HOT detector contacts
6.2.4 HOT detector options

6.3 Uncooled Photon vs. Thermal Detection Limits
6.4 Uncooled Detection: Conclusions

7 HgCdTe Electron Avalanche Photodiodes (EAPDs)

7.1 McIntyre’s Avalanche Photodiode Model
7.2 Physics of HgCdTe EAPDs
7.2.1 High-energy scattering rates
7.2.2 Electron impact ionization rate in HgCdTe
Contents

7.3 Empirical Model for Electron Avalanche Gain in HgCdTe 121
7.4 Room-Temperature HgCdTe APD Performance 129
7.5 Monte Carlo Modeling 131
7.6 Conclusions 133

8 Future HgCdTe Developments 135
8.1 Dark Current Model 135
 8.1.1 N-side 136
 8.1.2 P-side 137
8.2 The Separate Absorption and Detection Diode Structure 139
8.3 Multicolor and Multispectral FPAs 141
8.4 High-Density FPAs 143
8.5 Low Background Operation 143
 8.5.1 LWIR 14 μm at 40 K 143
 8.5.2 Low background operation at a cutoff of 25 μm 144
8.6 Higher Operating Temperatures 145
 8.6.1 High-gain APDs 147
8.7 Conclusion 148

Epilogue 149

Appendix A: Mathcad Program for HgCdTe Diode Dark Current Modeling 151

References 165

About the Author 169

Index 171