Index

#
10×-II Schwarzschild, 14
193 nm, 588, 606, 616, 629, 634
248 nm, 606, 613, 616

A
aberration, 205, 207, 213
correction, 24
absolute ion flux, 295
absorber defect inspection, 357
repair, 357
absorber layer, 349
absorber stack etch, 355
absorption
data, 643
echo of Si, 4
absorption coefficient, 36
definitions, 391
definitions of EUV photoresists, 391
absorption cros-sections of the elements, 392
acid diffusion, 395, 426
actinic inspection, 342
Advanced Light Source (ALS), 140, 177, 213, 241, 408
Advanced Micro Devices (AMD), 60
Advanced Technology Program (ATP), 41
aerial image, 208, 470, 471, 475
monitors, 217
sensor, 507
Airy pattern, 163
alpha class lithography tool, 87
alternating phase shift mask (APSM), 371, 372, 603
American Institute of Physics (AIP), 242
amorphous, 239
amortize, 627, 635
amplitude defect, 343
annealing temperatures, 315
annular illumination, 522
antireflective coating (ARC), 328, 350, 401
apodization, 136, 171, 194
appearing dose (Da), 565
application specific integrated circuit
(ASIC), 597, 600, 603, 627, 635, 638
aspheric

departure, 24, 137, 143, 467
mirror, 15, 31, 154
surfaces, 2, 18
Association for Super-Advanced Electronics Technologies (ASET), 19, 70, 420
atomic force microscopy (AFM), 16, 340, 528
atomic hydrogen, 230
atomic layer deposition (ALD), 180
attenuated phase shift mask, 366
at-wavelength inspection, 34, 35
Auger electron spectroscopy (AES), 246, 303
autofocus, 467
automated material handling systems (AMHS), 607, 608
automated process control (APC), 628

B
backside conductive coating, 349, 353
bandwidth (BW), 213
barrier layers, 310
beamline, 115, 213, 217, 221, 241, 422, 613
Be K edge, 188
Bennett relation, 110
beta class, 220
bilayer period, 287
bisters, 290
binary chrome on glass (BIN COG), 603, 618
binary collision approximation (BCA), 271
borton-containing resists, 425
Bossing curve, 352, 472, 487, 520
bottom antireflective coating (BARC), 589
Bragg
equation, 336
reflectors, 135
wavelength, 21
bright-field signal, 342
Brookhaven National Laboratory (BNL), 37, 397
buffer layer, 349
etch, 360
C
calibrated debris diagnostic tool, 292
calixarenes, 421
Canon, 66

665
capping layer, 231, 302
carbon
 contamination, 35
 deposition, 229
catoptric projection system, 136
cell projection (CP), 626
Center for Plasma Material Interactions (CPMI), 292
Center for X-Ray Optics (CXRO), 297
database, 193, 297, 388, 643
centroid wavelength, 335
changes in joint requirements for EUV sources, 105
charge-coupled device (CCD), 209, 215, 344
charge exchange, 295
charging, 359
chemically amplified photoresist (CAR), 404, 433, 604
chemical-mechanical polishing (CMP), 395, 403, 507
chemical vapor deposition (CVD), 189
chromatic vignetting, 23
chuck nonflatness, 504
cleaning
 cycles, 280
 in-situ, 120, 228, 232
 optics contamination, 249
 clear aperture (CA), 165
 clear defect, 357
 clearing dose (Dc), 565
 (Eo), 386, 428
coefficient of thermal expansion (CTE), 173, 329
cohort aperture, 165
collector
 lifetime, 39, 281
 mirror, 265, 287
 reflectivity, 117
competitive technologies, 78
communication degradation calculations, 108
computer-controlled surfacing (CCS), 27
computer-generated holographic (CGH) nulls, 28, 153, 155
condenser
 mirrors, 38
 optics, 179
confocal microscopy, 344
consumables, 589, 613, 616
contact size variation, 548
contamination, 232, 290
contrast transfer function (CTF), 530
conversion efficiency (CE), 37, 287
 of EUV sources, 112
 for Xe, Li, and Sn, 112
cooperative research and development agreement (CRADA), 12, 58, 66, 76, 82
coordinate measuring machine (CMM), 174
cost of ownership (CoO), 585
cracking of residual hydrocarbons, 33
critical-illumination optics, 12
CrON, 618
cross-grating, 214
cross-sectional TEM, 335

D
damped least squares (DLS), 136
dark-field microscopy, 342
dC-magneton, 171
debris, 290
 measurement, 292
 mitigation, 37, 39, 279, 296
 suppression, 269
debris mitigation tool (DMT), 305
defect, 589, 590, 594, 603, 611, 617, 626, 629, 630, 633, 634, 640
density reduction, 340
 in ultrathin resist films, 397
 printability, 528
Defense Advanced Research Projects Agency (DARPA), 65
dense plasma focus (DPF), 114
Department of Commerce (DOC), 65
Department of Defense (DOD), 65
Department of Energy (DOE), 12, 18, 56, 58
deposition, 270, 286
depth of focus (DOF), 21, 408, 517, 525, 629
design of experiment (DOE), 411
die size, 597, 598, 600, 603, 639
diffraction-limited, 213
 imaging, 7
diffusion barriers, 286
digital signal processor (DSP), 596
Dill B- and C-parameters, 388
dimethylaminopentamethyldisilane (DMAPMDS), 395
dioptic projection lens, 151
direct cover with absorber pattern, 347
discharge-produced plasma (DPP), 109, 286, 453, 472, 629
dose
 sensor, 507
 to clear (Eo), 559, 624
d spacing, 333
dual pod concept, 508
dummification, 568
DUV contrast, 328
dynamic random access memory (DRAM), 596, 597, 600, 603, 627, 639
Index 667

E

e-beam
 repair technology, 359
 writing, 355
electric-field foil trap, 299
electrode
 lifetime, 125
 materials, 292
electron beam, 209
 repair, 346
electron-beam projection lithography (EPL), 66, 588
electron binding energies, 653
electrostatic chuck, 349, 461, 482, 503
 embedded phase shift masks (ePSM), 368, 570
energy sector analyzer (ESA), 292
engineered MLs, 89
engineering test stand (ETS), 72, 147, 517–519
camera, 178
environmentally stable chemically amplified photoresists (ESCAP), 404, 407
erosion, 270, 290
 rate, 271, 297
etch
 rates, 302
 selectivity, 356
etch stop layer (ESL), 367
etched binary mask, 364
étendue, 150
 mismatch, 118
 of source output, 104
E10 RAM, 624
EUV
 absorbance, 393
 attenuation, 368
 blank requirements, 327
 collection and illumination system, 455
 critical issues, 105
 illumination, 473
 imaging objective, 453
 imaging tool, 344, 450
 interferometry, 31, 221
 microscope, 475
microstepper, 138, 453
objective, 475
optics, 453
PAG, 426
radiation monitoring, 463
reflectometry, 336
reticle aerial image, 485
source, 103, 453, 472
 performance, 112
 power measurements, 115
 requirements, 106
 technology limits, 116
EUVL, 1–3, 7, 16, 104
 optical design considerations, 135
 printing, 90
EUV LLC, 2, 59
 business model, 60
 funding, 76
 organizational structure, 63
 program goals, 61
EUV mask
 fabrication process, 327
 technology, 326
EUV-reflective ML coating, 327
EUV-2D resist, 393, 524
exact constraint design, 177
exposure
 dose control, 469
 mechanisms, 426
 sensitivity curves, 390
 tool cell, 589, 606, 611, 622, 635
 laser, 613
 throughput, 589
 wavelength, 21
exposure-defocus (E-D) process window, 170
exposure latitude (EL), 519, 629
extended DUV resists, 90
extension of DUV, 78
Extreme Ultraviolet Imaging Telescope (EIT), 228
Extreme Ultraviolet Lithography System Development Association (EUV A), 19
Extreme UV Alpha Tools Integration Consortium (EXTATIC), 19
Extreme UV Concept Lithography Development System (EUCLIDES), 19

F

Faraday cup, 292
far field (FF), 210, 264
fast-ion mitigation, 296
fast ions, 295
field image alignment (FIA) sensor, 507
field size, 501, 596, 598, 607, 613, 627
figure
 aberrations, 207
 error, 207
film quantum yield, 434
finite element analysis (FEA), 266, 459
flare, 15, 169, 551
 calculation, 551, 557
 mitigation, 568
flare variation compensation (FVC), 566
flatness requirement, 340
Flying Circus (FC) project, 115
focus budget, 509
focus exposure latitude, 630
focus exposure matrix (FEM), 519
focused ion beam (FIB), 345
foil trap, 126, 298
Foucault, 208, 210
Fourier transform infrared spectroscopy (FTIR), 247
Free electron lasers (FEL), 221
front-opening unified pod (FOUP), 628
full-width half maximum (FWHM), 524
Fundamenteel Onderzoek der Materie Institute (FOM), 19

G
gas
curtain mitigation, 299
flow, 298
jet, 38
transmission, 117
gas-assisted etching (GAE), 357
geometrical collector efficiency, 117
glass-transition temperature (Tg), 395
good wafer level exposure (GWLE), 109,
587, 588, 595, 604, 636, 637
graphical user interface (GUI), 96, 464
grating, 212
grazing angle collector, 261
grazing-incidence (GI), 106, 263

H
half pitch (HP), 42, 261
Hartmann
test, 208
wavefront sensor, 215
heat stability, 316
Henke Tables, 36
hexamethyldisilazane (HMDS), 399
high-power laser status, 123
high-purity fused silica (HPFS), 618
high-resolution imaging, 488
high-spatial-frequency errors, 170
high spatial frequency roughness (HSFR),
16, 330
high volume manufacturing (HVM), 104
Himeji Institute of Technology (HIT), 19, 41
horizontal/vertical (HV) effects, 533
hydrogen silsesquioxane (HSQ), 422

I
IBM, 60
I-line, 599, 601, 602, 606, 610, 613, 615, 616
Illinois ion energy reduction technique
(INERT), 298
illumination optics, 12, 494
design, 494
illumination uniformity, 468
image
flare, 30
placement, 617, 627, 629
image log slope (ILS), 406, 567
image placement error (IPE), 149, 331
imaging layer (IL), 395, 399
implantation, 286
implementation delays, 77
inductively coupled plasma, 302
Infineon, 60
in-plane distortion (IPD), 354, 504
in-situ
 cleaning, 301
 metrology, 246
instantaneous clear aperture (ICA), 165
integrated energy stability, 104
integrated product scheduling (IPS), 628
Intel, 60
intellectual property (IP), 59
disclosures, 76
portfolio, 76
interdiffusion
layers, 312
of MLs, 497
interface stabilization, 312
interferogram, 206
interferometer, 207, 208
interferometry, 206, 219–222
intermediate focus (IF), 104, 106, 262, 316,
463, 495
International SEMATECH, 65
International SEMATECH Manufacturing
Initiate (ISMI), 600
International Technology Roadmap for
Semiconductors (ITRS), 42, 58, 127, 489
inverse bremsstrahlung absorption (IBA),
111
inverse Cassegrain, 23
ion
ergy, 293
gun, 292
polishing, 339
spectra, 293
ion beam figuring (IBF), 331
ion-beam projection lithography (IPL), 66,
588
ion beam sputter deposition (IBSD), 34, 333
ion-enhanced etching, 301

J
Japan Society for Precision Engineering (JSPE), 42, 50
joint development agreement (JDA), 66, 450
joint development program (JDP), 59
joint requirements, 107
 for EUV sources, 104

K
kinetic energy, 111, 296
kirk test, 559
knife-edge, 208, 210
Index 669

k_1, 516, 603, 619, 630, 631
KRS photoresists, 413

L
lactonization polarity switch, 419
laser
 ablation, 357
 excimer, 9, 111, 115, 451, 494, 589, 605, 610, 624
 plasma source, 9
 power, 123
 source, 604, 607, 612, 613, 624, 629, 633, 636
laser-produced plasma (LPP), 111, 285, 629
laser shock wave cleaning (LSC), 361, 363
Lawrence Berkeley National Laboratory (LBNL), 213, 216
Lawrence Livermore National Laboratory (LLNL), 219
layer mixing, 286
layered synthetic microstructure (LSM), 3
Li DPP, 123
lifetime, 290
light element gas, 299
light scattering and surface roughness, 553
line edge roughness (LER), 42, 428, 539, 543
 versus E_{size}, 399
line edge roughness transfer function (LTR), 539
line width roughness (LWR), 437
liquid-droplet targets, 39
lithium salt of ethylenediamine (LiEDA), 36
local oxidation of silicon (LOCOS), 16
logic, 596, 597, 604, 607, 627
Los Alamos National Laboratory (LANL), 45
 low-angle x-ray diffraction, 336
 low defect deposition (LDD), 67
 low departure aspheric reflectors, 15
 low-frequency (figure) errors, 165
 low-pressure chemical vapor deposition (LPCVD), 16
 low-temperature oxide (LTO), 16, 17
 low thermal expansion material (LTEM), 32, 327

M
magnetic
 confinement, 296
 field, 297
magnetohydrodynamics (MHD), 111
magnetorheological finishing (MRF), 175, 331
magnetron sputtering, 286, 334
Marechal criterion, 31, 164, 168
mask, 325, 587
 cleaning, 361
 format, 326
 handling, 353
 patterning, 355
 roughness, 543, 549
 substrate, 328, 329
Mask Blank Development Center (MBDC), 90, 341
mask blank fabrication, 332
mask error enhancement factor (MEEF), 574
maskless lithography (ML2), 631
mass-limited target, 39
master oscillator–power amplifier (MOPA), 123
material characterization, 294
maximum solid angle input to illuminator, 104
mean time between failure (MTBF), 108, 619, 622
mean time to repair (MTTR), 619, 622
mean time to test (MTTT), 611
membrane micropore filtration, 625
Metal-oxide semiconductor (MOS) devices, 11
demonstration, 16
MET-K resist, 525
microchannel plates (MCP), 293
Microelectronics Development for European Applications+ (MEDEA+), 19
micro-exposure tool (MET), 138, 140, 216, 530
camera, 178
projection optics performance summary, 143
Micron, 60
microprocessing unit (MPU), 597, 600, 603, 606, 609
microstepper design parameters, 140
mid-spatial-frequency errors, 169
mid-spatial-frequency roughness (MSFR), 15, 30, 140, 329
minimum feature size (MFS), 634
mirror
 lifetimes, 292
 reflectivity, 120
mitigation
 debris, 37, 106, 116, 237
 thermal, 121
modified alternating phase shift mask, 372
modified Bragg’s law, 333
modified illumination, 522, 533
modulation transfer function (MTF), 542
molecular beam epitaxy (MBE), 189, 250
Mo/Si, 228, 618
Motorola, 60
multilayer (ML), 135, 228
 added figure errors, 194
 adders, 340
 characterization, 335
coatings, 187
defect compensation, 347
defect inspection, 342
defect repair, 345
deposition, 189, 332
materials, 188
resists, 394
thickness specifications, 193

N
nano imprint lithography (NIL), 631
nanostructure, 238
National Institute for Standards and Technology (NIST), 65
National Synchrotron Light Source (NSLS), 203
Nd:YAG, 123
negative chemically amplified resist, 388
negative tone resists, 419, 425, 569
next-generation lithography (NGL), 62, 285, 488
Nikon, 66
Nikon Step and Repeat System (NSR), 507
non-actinic inspection, 342
nonflatness, 331
normal-incidence (NI) angle, 106
mirrors, 290
molybdenum-silicon (Mo/Si) multilayer (ML), 136
reflective optics, 3
normalized image log slope (NILS), 472, 570
NPNPNP configurations, 154
n-type metal–oxide semiconductor (NMOS), 16, 17, 606
null tests, 218
numerical aperture (NA), 21, 22, 136, 496, 498

O
off-axis illumination (OAI), 570, 624
Office of the Director of Defense Research & Engineering (DDR&E), 65
Offner relay, 154
Offner ring-field imaging system, 7
opaque defect, 357
optical
 constants, 192, 643
design, 269
microscope, 471
optical proximity correction (OPC), 347, 607, 620, 631
Optical Society of America (OSA), 9, 42
optical transfer function (OTF), 539
optics, 219, 230
cleaning, 300
fabrication, 89
lifetime, 232
out-of-band (OOB) radiation, 118
out-of-plane distortion, 354, 504
overhead (OH), 592, 593, 607, 609, 610, 612, 617, 623, 626, 634
overlay (OL), 611, 624, 628, 633, 634, 637
overlay budget, 509
oxidation, 229
peak reflectance, 333
reflectivity, 312
wavelength, 312
penetration depth, 6
Petzval sum, 152, 156
phase
 bumps, 163
defects, 33, 343, 345
errors, 163
phase-measuring interferometer (PMI), 27
phase-measuring microscopy (PMM), 176
phase shift concept, 363
phase shifter, 368
phase shifting, 212
phase-shifting diffraction interferometer (PSDI), 176, 219
phase-shifting point diffraction interferometer (PS/PDI), 20, 179, 211
photo acid generators (PAGs), 391
photochemical decomposition mechanism of PMMA, 417
photoelectron emission microscopy (PEEM), 344
photon energies, 659
photoresist, 221, 383
physical constants, 652
physical vapor deposition (PVD), 189
Physikalisch-Technische Bundesanstalt (PTB), 32, 241
pinch effect, 109
pinhole, 210–213
defects, 397
pits, 340
planarization layer (PPL), 395
plasma-assisted cleaning by electrostatics (PACE), 362
plasma-enhanced chemical vapor deposition (PECVD), 249
plasma expansion, 286, 292
plasma sources, 109

Downloaded From: https://www.spiedigitallibrary.org/ebooks/ on 24 Jan 2020
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use
Index

- PNNPNP configuration, 153
- PNPPNP configuration, 150
- PN114, 388
- point diffraction, 208, 213
- point-diffraction interferometry (PDI), 210
- point-spread function (PSF), 163, 524, 555
- polybutene-1 sulfone (PBS), 36
- polycrystalline, 239
- polyhydroxystyrene (PHS), 413
- polyimide, 181
- polymethylmethacrylate (PMMA), 385, 389, 416
 - exposure mechanism, 417
- polystyrene latex (PSL), 332
- post-exposure bake (PEB), 355, 388, 395, 409, 414, 429
- power spectral density (PSD), 30, 167, 554
- PPNPNP configuration, 152
- preventative maintenance (PM), 593
- printed CD bias, 351
- process window, 520, 524, 551
- productivity, 586, 599, 600, 603, 606, 610, 613, 619, 622, 627, 629, 635, 639, 640
- profilometer, 303
- PRogramme Extreme UV (PREUV), 19, 100
- projection optics (PO), 163, 207, 229, 498
- projection optics box (POB), 566
- projection optics performance summary for the ETS, 148
- proximity effect, 355
- pulsed foil trap mitigation, 298
- pupil, 212

Q

- quantum yield, 387, 418
- quartz crystal, 298
- quartz crystal microbalance (QCM), 126

R

- Rayleigh
 - constant, 516
 - criterion, 31
- reactive ion etching (RIE), 301, 386
- reflection
 - coefficient, 273
 - of fast particles, 272
- reflection mask (RM), 13, 141, 386
- reflective masks, 7
- ML coatings, 2
- reflectivity, 3, 191, 233, 287, 560
- of MLs, 5, 21, 41
- collector, 117
- degradation, 104, 120, 241, 265, 269, 286, 290, 297, 345
- loss, 290
- relative humidity (RH), 416
- reliability, availability, and maintainability (RAM), 619
- repeller field, 38
- repetition frequency, 104, 497
- Research Development Center (RDC), 81
- residual gas analyzer (RGA), 302, 467
- resist development, 450
- exposure, 470
- sensitivity, 119
- sidewall profile, 23
- resolution (RES), 21, 516
- enhancement, 373, 516, 522
- resolution enhancement technique (RET), 620, 624, 630, 640
- resolution, LER, sensitivity (RLS), 384, 436
- reticle, 105, 107, 109, 138, 163, 335, 459, 461, 475, 589, 601, 605, 607, 617, 620, 624, 626, 628–630, 633, 634, 639
- and wafer stages, 502
- chuck, 503
- focus sensor, 506
- handling system, 508
- imaging, 475
- imaging actinic microscope, 450, 470
- loader, 483
- stages and chuck, 479
- reticle imaging microscope (RIM), 470
- return on investment (ROI), 489
- RF bias, 301
- right of first refusal (ROFR), 59, 61
- ring-field, 25
- ring-opening metathesis polymerization (ROMP), 424
- risk management, 68
- Ronchi, 208
- Ronler Processing 1 (RP1), 559
- roughening of surfaces, 15, 18, 30, 32, 265, 286, 290
- roughness of interfaces, 339
 - specification, 171
- Ru(0001), 248
- Ru erosion, 275
- Ruthenium, 231

S

- sagittal plane, 151
- Sandia National Laboratories (SNL), 9, 56, 187, 229
- scanner, 596, 601, 604, 608–610, 613, 622, 626
- EUVL, 104, 193, 352, 493
- scanning electron microscopy (SEM), 34, 359, 386, 399, 417, 421, 447
- scanning probe-based mechanical nanomachining, 357
- scanning tunneling microscopy (STM), 389
- Scheimpflug condition, 141
schematics of EUV source, 106
Schwarzschild, 2
objective, 139
1/8 reduction optic, 386
secondary electrons, 236
secondary-ion mass spectroscopy (SIMS), 247
secondary ion source, 339
selectively etch, 301
self-sputtering, 271
Semiconductor Equipment and Materials International (SEMI), 89, 491, 588
Semiconductor Industry Association (SIA), 65, 99, 638
Semiconductor Research Corporation (SRC), 65, 86, 99
SEMI E10, 619
SEMI E35, 592, 639
SEMI E79, 619
SEMI P37, 329
SEMI P38, 326, 353
SEMI P40, 353, 483, 504
send-ahead (SAHD), 611
Shack-Hartmann wavefront sensor (SHWS), 216
shadowing effect, 351
shearing, 208, 213
sidewall angle, 37
silicide, 338
silicon-nitride, 209
silicon oxynitride (SiO$_x$N), 400
silicon resists, 422
Silicon Valley Group Lithography (SVGL), 61
silicone-based positive photoresist (SPP), 386
single-layers resist (SLR), 401
six-mirror EUVL projection systems, 149
smoothing substrate particles, 339
Sn contamination, 300
Sn DPP, 122
Sn fluence, 278
Sn halides, 280
Sn LPP, 125
Sn surface dose, 275
Sn-Ru interaction, 271
snow plough model, 111
soft bake (SB), 409, 441, 626
soft x-ray projection lithography (SXPL), 6, 10, 40, 43, 99, 252, 438, 512
solar and heliospheric observatory (SOHO), 228
source cleanliness, 104
components and their lifetimes, 125
EUV, 104
requirements, 104, 106, 496
size, 113, 118, 119, 496
sources of flare, 551
spectral purity, 104
spectral purity filter (SPF), 106, 118, 122, 458, 464
transmission, 116, 117
spectral reflectivity of a ML-coated mirror, 108
spherical energy sector analyzer (ESA), 292
spin-on glass, 181
sputtering yield, 291, 309
standard mechanical interface (SMI), 333, 451
statements of work (SOW), 90
statistical process control (SPC), 628
stepper, 589, 601, 604, 609, 610, 624, 626, 629, 632–634, 640
Strehl ratio, 148, 164, 213
stress reduction, 340
subaperture polishing, 28
Subfield Exposure Station (SES), 518, 522
sub-resolution assist features (SRAF), 620
substrate defect, 332
phase defects, 35
super acids, 405
Super-Advanced Electronics Technologies (ASET), 19
supersonic hydrocleaning (SHC), 361
surface chemistry, 246
erosion, 286
figure, 27
finish, 27
oxide, 337
surface-imaging resist, 36
synchrotron, 9, 37, 207, 221
system end-of-life transmission, 107
systematic errors, 176, 218, 219
T
tandem stage, 624
target accuracy, 207
telecentric, 9, 24
test elements group (TEG), 496
test structure, 403
tetramethylammonium hydroxide (TMAH), 422
thermal and radiation loads, 305
loading of illuminator, 497
stability, 286, 312
thermo-opto-mechanical design, 267
throughput (TPT), 587, 589, 591, 596, 601, 612, 613, 618, 625, 626
time of arrival, 293
time of flight spectra, 293
Tinsley, 66
tool
core, 459, 479
subsystems, 459
utilization, 589
top surface imaging (TSI), 394
total defects, 340
total integrated scatter (TIS), 557
total system wavefront error, 31
track, 589, 590, 595, 604, 607, 616, 617, 622, 625, 626
transition region and coronal explorer (TRACE), 228
transmission electron microscope (TEM), 33, 334
characterization, 316
transmission image sensor (TIS), 217
transmission mask (TM), 141
trapped friction, 177
TRW, 66
twin scan dual-stage, 624
two-aspherical-mirror imaging system, 12
U
ultrahigh vacuum (UHV), 451, 464, 480
ultra-low-expansion (ULE) light-weighted chucks, 461
ultra-low-expansion (ULE) (Corning glass), 174, 329
ultra-pure water (UPW), 361, 617
Ultratech, 66
ultrathin resist (UTR), 397
unexposed film thickness loss (UFTL), 405
United States Advanced Lithography Program, 12
United States National EUV Lithography Program, 12
utility requirements, 114
utilization, 589, 593, 601, 606, 613, 619, 622, 628, 632, 634, 636
UV cleaning, 361
V
vacuum
conditions, 467
system, 464, 483
vacuum ultraviolet (VUV), 118, 266
vector-shaped beam (VSB), 626
Veeco, 66
visible-light interferometry, 28, 89, 206, 219
visible microscope, 477
Virtual National Laboratory (VNL), 59
W
wafer
alignment sensor, 507
and reticle chucks, 461
and reticle loading, 461
and reticle stages, 459
chuck, 505
focus sensor, 506
handling system, 508
size, 601, 607, 622
throughput budget, 510
throughput model, 109
wafers/hour (WPH), 104, 109, 606, 613, 624
wafers/mask (WPM), 590, 596, 597, 603
wall plug-to-laser light CE (wall-plug efficiency), 112, 115
water vapor, 229
wavefront, 205, 206, 222
wavefront error (WFE), 145
Wölter ellipsoid collector shells, 455
Wölter type, 117
Wölter-type mirror, 265
worldwide EUV interest, 86
X
x-ray diffraction (XRD), 315, 336
x-ray photoelectron spectroscopy (XPS), 305
x-ray proximity lithography (XPL), 4, 10
Xe, 270
Xe DPP, 121
Xe LPP, 124
Y
y-monopole, 538
yttrium aluminum garnet (YAG), 37, 112, 113, 115, 123, 124, 344, 363, 471, 477
Z
Zernike, 219
expansion, 140
terms, 163
Zerodur, 174, 175
zone plate, 216, 342
ZrSiO, 618