Index

#
10×-II Schwarzschild, 14
193 nm, 588, 606, 616, 629, 634
248 nm, 606, 613, 616

A
aberration, 205, 207, 213
correction, 24
absolute ion flux, 295
absorber defect inspection, 357
repair, 357
absorber layer, 349
absorber stack etch, 355
absorption
data, 643
type of Si, 4
absorption coefficient, 36
definitions, 391
of EUV photoresists, 391
absorption cross-sections of the elements, 392
acid diffusion, 395, 426
actinic inspection, 342
Advanced Light Source (ALS), 140, 177, 213, 241, 408
Advanced Micro Devices (AMD), 60
Advanced Technology Program (ATP), 41
aerial image, 208, 470, 471, 475
monitors, 217
sensor, 507
Airy pattern, 163
alpha class lithography tool, 87
alternating phase shift mask (APSM), 371, 372, 603
American Institute of Physics (AIP), 242
amorphous, 239
amortize, 627, 635
amplitude defect, 343
annealing temperatures, 315
annular illumination, 522
antireflective coating (ARC), 328, 350, 401
apodization, 136, 171, 194
appearing dose (Da), 565
application specific integrated circuit (ASIC), 597, 600, 603, 627, 635, 638
asphere fabrication, 27
aspheric
departure, 24, 137, 143, 467
mirror, 15, 31, 154
surfaces, 2, 18
Association for Super-Advanced Electronics Technologies (ASET), 19, 70, 420
atomic force microscopy (AFM), 16, 340, 528
atomic hydrogen, 230
atomic layer deposition (ALD), 180
attenuated phase shift mask, 366
at-wavelength inspection, 34, 35
Auger electron spectroscopy (AES), 246, 303
autofocus, 467
automated material handling systems (AMHS), 607, 608
automated process control (APC), 628
B
backside conductive coating, 349, 353
bandwidth (BW), 213
barrier layers, 310
beamline, 115, 213, 217, 221, 241, 422, 613
Be K edge, 188
Bennett relation, 110
beta class, 220
bilayer period, 287
bilayers, 290
binary chrome on glass (BIN COG), 603, 618
binary collision approximation (BCA), 271
boron-containing resists, 425
Bossung curve, 352, 472, 487, 520
bottom antireflective coating (BARC), 589
Bragg equation, 336
reflectors, 135
wavelength, 21
bright-field signal, 342
Brookhaven National Laboratory (BNL), 37, 397
buffer layer, 349
etch, 360
C
calibrated debris diagnostic tool, 292
calixarenes, 421
Canon, 66
Index

capping layer, 231, 302
carbon
 contamination, 35
deposition, 229
catoptric projection system, 136
cell projection (CP), 626
Center for Plasma Material Interactions (CPMI), 292
Center for X-Ray Optics (CXRO), 297
database, 193, 297, 388, 643
centroid wavelength, 335
changes in joint requirements for EUV sources, 105
charge-coupled device (CCD), 209, 215, 344
charge exchange, 295
charging, 359
chemically amplified photoresist (CAR),
 404, 433, 604
chemical-mechanical polishing (CMP), 395,
 403, 507
chemical vapor deposition (CVD), 189
chromatic vignetting, 23
chuck nonflatness, 504
cleaning
cycles, 280
in-situ, 120, 228, 232
optics contamination, 249
 clear aperture (CA), 165
clear defect, 357
clearing dose
 (Dc), 565
 (Eo), 386, 428
coefficients of thermal expansion (CTE),
 173, 329
coherent flux, 213
collector
 lifetime, 39, 281
 mirror, 265, 287
 reflectivity, 117
 competitive technologies, 78
component degradation calculations, 108
 computer-controlled surfacing (CCOS), 27
 computer-generated holographic (CGH) nulls, 28, 153, 155
condenser
 mirrors, 38
 optics, 179
confocal microscopy, 344
consumables, 589, 613, 616
contact size variation, 548
contamination, 232, 290
contrast transfer function (CTF), 530
conversion efficiency (CE), 37, 287
do EUV sources, 112
for Xe, Li, and Sn, 112
 cooperative research and development agreement (CRADA),
 12, 58, 66, 76, 82
coordinate measuring machine (CMM), 174
cost of ownership (CoO), 585
 cracking of residual hydrocarbons, 33
critical dimension (CD) control, 31, 37, 108,
 148, 355, 497, 551, 610, 611, 618, 627,
 630, 633
critical-illumination optics, 12
CrON, 618
cross-grating, 214
cross-sectional TEM, 335

D
damped least squares (DLS), 136
dark-field microscopy, 342
DC-magnetron, 171
debris, 290
 measurement, 292
 mitigation, 37, 39, 279, 296
 suppression, 269
debris mitigation tool (DMT), 305
defect, 589, 590, 594, 603, 611, 617, 626,
 629, 630, 633, 634, 640
density reduction, 340
 in ultrathin resist films, 397
printability, 528
Defense Advanced Research Projects Agency (DARPA), 65
dense plasma focus (DPF), 114
Department of Commerce (DOC), 65
Department of Defense (DOD), 65
Department of Energy (DOE), 12, 18, 56, 58
deposition, 270, 286
depth of focus (DOF), 21, 408, 517, 525, 629
design of experiment (DOE), 411
die size, 597, 598, 600, 603, 639
diffraction-limited, 213
 imaging, 7
diffusion barriers, 286
digital signal processor (DSP), 596
Dill B- and C-parameters, 388
dimethylaminopentamethyldisilane (DMAPMDS), 395
dioptric projection lens, 151
direct cover with absorber pattern, 347
discharge-produced plasma (DPP), 109, 286,
 453, 472, 629
dose
 sensor, 507
to clear (Eo), 559, 624
d′ spacing, 333
dual pod concept, 508
dummification, 568
DUV contrast, 328
dynamic random access memory (DRAM),
 596, 597, 600, 603, 627, 639
E

e-beam
repair technology, 359
writing, 355
electric-field foil trap, 299
electrode
lifetime, 125
materials, 292
electron beam, 209
repair, 346
electron-beam projection lithography (EPL), 66, 588
electron binding energies, 653
electrostatic chuck, 439, 461, 482, 503
embedded phase shift masks (ePSM), 368, 570
energy sector analyzer (ESA), 292
engineered MLs, 89
engineering test stand (ETS), 72, 147, 517–519
camera, 178
environmentally stable chemically amplified photoresists (ESCAP), 404, 407
erosion, 270, 290
rate, 271, 297
etch
rates, 302
selectivity, 356
etch stop layer (ESL), 367
etched binary mask, 364
étendue, 150
mismatch, 118
of source output, 104
E10 RAM, 624
EUV
absorbance, 393
attenuation, 368
blank requirements, 327
collection and illumination system, 455
critical issues, 105
illumination, 473
imaging objective, 453
imaging tool, 344, 450
interferometry, 31, 221
microscope, 475
microstepper, 138, 453
objective, 475
optics, 453
PAG, 426
radiation monitoring, 463
reflectometry, 336
reticle aerial image, 485
source, 103, 453, 472
performance, 112
power measurements, 115
requirements, 106
technology limits, 116
EUVL, 1–3, 7, 16, 104
optical design considerations, 135
printing, 90
EUV LLC, 2, 59
business model, 60
funding, 76
organizational structure, 63
program goals, 61
EUV mask
fabrication process, 327
technology, 326
EUV-reflective ML coating, 327
EUV-2D resist, 393, 524
exact constraint design, 177
exposure
dose control, 469
mechanisms, 426
sensitivity curves, 390
tool cell, 589, 606, 611, 622, 635
laser, 613
throughput, 589
wavelength, 21
exposure-defocus (E-D) process window, 170
exposure latitude (EL), 519, 629
extended DUV resists, 90
extension of DUV, 78
Extreme Ultraviolet Imaging Telescope (EIT), 228
Extreme Ultraviolet Lithography System Development Association (EUV A), 19
Extreme UV Alpha Tools Integration Consortium (EXTATIC), 19
Extreme UV Concept Lithography Development System (EUCLIDES), 19

F
Faraday cup, 292
far field (FF), 210, 264
fast-ion mitigation, 296
fast ions, 295
field image alignment (FIA) sensor, 507
field size, 501, 506, 598, 607, 613, 627
figure
aberrations, 207
error, 207
film quantum yield, 434
finite element analysis (FEA), 266, 459
flare, 15, 169, 551
calculation, 551, 557
mitigation, 568
flare variation compensation (FVC), 566
flatness requirement, 340
Flying Circus (FC) project, 115
focus budget, 509
focus exposure latitude, 630
focus exposure matrix (FEM), 519
focused ion beam (FIB), 345
foil trap, 126, 298
Foucault, 208, 210
Fourier transform infrared spectroscopy (FTIR), 247
Free electron lasers (FEL), 221
front-opening unified pod (FOUP), 628
full-width half maximum (FWHM), 524
Fundamenteel Onderzoek der Materie Institute (FOM), 19

G
gas
curtain mitigation, 299
flow, 298
jet, 38
transmission, 117
gas-assisted etching (GAE), 357
geometrical collector efficiency, 117
glass-transition temperature (Tg), 395
good wafer level exposure (GWLE), 109, 587, 588, 595, 604, 636, 637
graphical user interface (GUI), 96, 464
grating, 212
grazing angle collector, 261
grazing-incidence (GI), 106, 263

H
half pitch (HP), 42, 261
Hartmann
test, 208
wavefront sensor, 215
heat stability, 316
Henke Tables, 36
hexamethyldisilazane (HMDS), 399
high-power laser status, 123
high-purity fused silica (HPFS), 618
high-resolution imaging, 488
high-spatial-frequency errors, 170
high spatial frequency roughness (HSFR), 16, 330
high volume manufacturing (HVM), 104
Himeji Institute of Technology (HIT), 19, 41
horizontal/vertical (HV) effects, 533
hydrogen silsesquioxane (HSQ), 422

I
IBM, 60
I-line, 599, 601, 602, 606, 610, 613, 615, 616
Illinois ion energy reduction technique (INERT), 298
illumination optics, 12, 494
design, 494
illumination uniformity, 468
image
flare, 30
placement, 617, 627, 629
image log slope (ILS), 406, 567
image placement error (IPE), 149, 331
imaging layer (IL), 395, 399
implantation, 286
implementation delays, 77
inductively coupled plasma, 302
Infineon, 60
in-plane distortion (IPD), 354, 504
in-situ
 cleaning, 301
 metrology, 246
instantaneous clear aperture (ICA), 165
integrated energy stability, 104
integrated product scheduling (IPS), 628
Intel, 60
intellectual property (IP), 59
disclosures, 76
portfolio, 76
interdiffusion
 layers, 312
 of MLs, 497
interface stabilization, 312
interferogram, 206
interferometer, 207, 208
interferometry, 206, 219–222
intermediate focus (IF), 104, 106, 262, 316, 463, 495
International SEMATECH, 65
International SEMATECH Manufacturing Initiate (ISMI), 600
International Technology Roadmap for Semiconductors (ITRS), 42, 58, 127, 489
inverse bremsstrahlung absorption (IBA), 111
inverse Cassegrainl absorption (IBA), 111
inverse bremsstrahlung absorption (IBA), 111
ion
 energy, 293
gun, 292
polishing, 339
spectra, 293
ion beam figuring (IBF), 331
ion-beam projection lithography (IPL), 66, 588
ion beam sputter deposition (IBSD), 34, 333
ion-enhanced etching, 301

J
Japan Society for Precision Engineering (JSPE), 42, 50
joint development agreement (JDA), 66, 450
joint development program (JDP), 59
joint requirements, 107
 for EUV sources, 104

K
kinetic energy, 111, 296
kirk test, 559
knife-edge, 208, 210
Index

k_1, 516, 603, 619, 630, 631
KRS photoresists, 413

L
lactonization polarity switch, 419
laser
ablation, 357
excimer, 9, 111, 115, 451, 494, 589, 605, 610, 624
plasma source, 9
power, 123
source, 604, 607, 612, 613, 624, 629, 633, 636
laser-produced plasma (LPP), 111, 285, 629
laser shock wave cleaning (LSC), 361, 363
Lawrence Berkeley National Laboratory (LBNL), 213, 216
Lawrence Livermore National Laboratory (LLNL), 219
layer mixing, 286
layered synthetic microstructure (LSM), 3
Li DPP, 123
lifetime, 290
light element gas, 299
light scattering and surface roughness, 553
line edge roughness (LER), 42, 428, 539, 543
versus E_{size}, 399
line edge roughness transfer function (LTR), 539
line width roughness (LWR), 437
liquid-droplet targets, 39
lithium salt of ethylenediamine (LiEDA), 36
local oxidation of silicon (LOCOS), 16
logic, 596, 597, 604, 607, 627
Los Alamos National Laboratory (LANL), 45
low-angle x-ray diffraction, 336
low defect deposition (LDD), 67
low departure aspheric reflectors, 15
low-frequency (figure) errors, 165
low-pressure chemical vapor deposition (LPCVD), 16
low-temperature oxide (LTO), 16, 17
low thermal expansion material (LTEM), 32, 327

M
magnetic
confinement, 296
field, 297
magnetohydrodynamics (MHD), 111
magneto-thermoelectrical finishing (MRF), 175, 331
magnetron sputtering, 286, 334
Marechal criterion, 31, 164, 168
mask, 325, 587
 cleaning, 361
 format, 326
 handling, 353
 patterning, 355
 roughness, 543, 549
 substrate, 328, 329
Mask Blank Development Center (MBDC), 90, 341
mask blank fabrication, 332
mask error enhancement factor (MEEF), 574
maskless lithography (ML2), 631
mass-limited target, 39
master oscillator–power amplifier (MOPA), 123
material characterization, 294
maximum solid angle input to illuminator, 104
mean time between failure (MTBF), 108, 619, 622
mean time to repair (MTTR), 619, 622
mean time to test (MTTT), 611
membrane micropore filtration, 625
Metal-oxide semiconductor (MOS) devices, 11
demonstration, 16
MET-1K resist, 525
microchannel plates (MCP), 293
Microelectronics Development for European Applications+ (MEDEA+), 19
micro-exposure tool (MET), 138, 140, 216, 530
camera, 178
projection optics performance summary, 143
Micron, 60
microprocessing unit (MPU), 597, 600, 603, 606, 609
microstepper design parameters, 140
mid-spatial-frequency errors, 169
mid-spatial-frequency roughness (MSFR), 15, 30, 140, 329
minimum feature size (MFS), 634
mirror
 lifetimes, 292
 reflectivity, 120
mitigation
debris, 37, 106, 116, 237
thermal, 121
modified alternating phase shift mask, 372
modified Bragg’s law, 333
modified illumination, 522, 533
modulation transfer function (MTF), 542
molecular beam epitaxy (MBE), 189, 250
Mo/Si, 228, 618
Motorola, 60
multilayer (ML), 135, 228
 added figure errors, 194
 adders, 340
characterization, 335
coatings, 187
defect compensation, 347
defect inspection, 342
defect repair, 345
deposition, 189, 332
materials, 188
resists, 394
thickness specifications, 193

N
nano imprint lithography (NIL), 631
nanostructure, 238
National Institute for Standards and Technology (NIST), 65
National Synchrotron Light Source (NSLS), 203
Nd:YAG, 123
negative chemically amplified resist, 388
negative tone resists, 419, 425, 569
next-generation lithography (NGL), 62, 285, 488
Nikon, 66
Nikon Step and Repeat System (NSR), 507
non-actinic inspection, 342
nonflatness, 331
normal-incidence (NI) angle, 106
mirrors, 290
molybdenum-silicon (Mo/Si) multilayer (ML), 136
reflective optics, 3
normalized image log slope (NILS), 472, 570
NPNPNP configurations, 154
n-type metal–oxide semiconductor (NMOS), 16, 17, 606
null tests, 218
numerical aperture (NA), 21, 22, 136, 496, 498

O
off-axis illumination (OAI), 570, 624
Office of the Director of Defense Research & Engineering (DDR&E), 65
Offner relay, 154
Offner ring-field imaging system, 7
opaque defect, 357
optical
constantc, 192, 643
design, 269
microscope, 471
optical proximity correction (OPC), 347, 607, 620, 631
Optical Society of America (OSA), 9, 42
optical transfer function (OTF), 539
optics, 219, 230
cleaning, 300
fabrication, 89
lifetime, 232
out-of-band (OOB) radiation, 118
out-of-plane distortion, 354, 504
overhead (OH), 592, 593, 607, 609, 610, 612, 617, 623, 626, 634
overlay (OL), 611, 624, 628, 633, 634, 637
overlay budget, 509
oxidation, 229
peak reflectance, 333
reflectivity, 312
wavelength, 312
penetration depth, 6
Petzval sum, 152, 156
phase
bumps, 163
defects, 33, 343, 345
errors, 163
phase-measuring interferometer (PMI), 27
phase-measuring microscopy (PMM), 176
phase shift concept, 363
phase shifter, 368
phase shifting, 212
phase-shifting diffraction interferometer (PSDI), 176, 219
phase-shifting point diffraction interferometer (PS/PDI), 20, 179, 211
phase-shift mask (PSM), 363, 527
photo acid generators (PAGs), 391
photochemical decomposition mechanism of PMMA, 417
photoelectron emission microscopy (PEEM), 344
photon energies, 659
photoresist, 221, 383
physical constants, 652
physical vapor deposition (PVD), 189
Physikalisch-Technische Bundesanstalt (PTB), 32, 241
pinch effect, 109
pinhole, 210–213
defects, 397
pits, 340
planarization layer (PPL), 395
plasma-assisted cleaning by electrostatics (PACE), 362
plasma-enhanced chemical vapor deposition (PECVD), 249
plasma expansion, 286, 292
plasma sources, 109
PNNPNP configuration, 153
PNPPNP configuration, 150
PN114, 388
point diffraction, 208, 213
point-diffraction interferometry (PDI), 210
point-spread function (PSF), 163, 524, 555
polybutene-1 sulfone (PBS), 36
polycrystalline, 239
polyhydroxystyrene (PHS), 413
polymide, 181
polymethylmethacrylate (PMMA), 385, 389, 416
exposure mechanism, 417
polydimethylsiloxane (PDMS), 332
post-exposure bake (PEB), 355, 388, 395, 409, 414, 429
power spectral density (PSD), 30, 167, 554
PPNPNP configuration, 152
preventative maintenance (PM), 593
printed CD bias, 351
process window, 520, 524, 551
productivity, 586, 599, 600, 603, 606, 610, 613, 619, 622, 627, 629, 635, 639, 640
profilometer, 303
PRogramme Extreme UV (PREUV), 19, 100
projection optics (PO), 163, 207, 229, 498
projection optics box (POB), 566
projection optics performance summary for the ETS, 148
proximity effect, 355
pulsed foil trap mitigation, 298
pupil, 212
quantum yield, 387, 418
quartz crystal, 298
quartz crystal microbalance (QCM), 126
Rayleigh constant, 516
criterion, 31
reactive ion etching (RIE), 301, 386
reflection coefficient, 273
of fast particles, 272
reflection mask (RM), 13, 141, 386
reflective masks, 7
ML coatings, 2
reflectivity, 3, 191, 233, 287, 560
of MLs, 5, 21, 41
collector, 117
degradation, 104, 120, 241, 265, 269, 286, 290, 297, 345
loss, 290
relative humidity (RH), 416
reliability, availability, and maintainability (RAM), 619
repeller field, 38
repetition frequency, 104, 497
Research Development Center (RDC), 81
residual gas analyzer (RGA), 302, 467
resist development, 450
exposure, 470
sensitivity, 119
sidewall profile, 23
resolution (RES), 21, 516
enhancement, 373, 516, 522
resolution enhancement technique (RET), 620, 624, 630, 640
resolution, LER, sensitivity (RLS), 384, 436
reticle, 105, 107, 109, 138, 163, 335, 459, 461, 475, 589, 601, 605, 607, 617, 620, 624, 626, 628–630, 633, 634, 639
and wafer stages, 502
chuck, 503
focus sensor, 506
handling system, 508
imaging, 475
imaging actinic microscope, 450, 470
loader, 483
stages and chuck, 479
reticle imaging microscope (RIM), 470
return on investment (ROI), 489
RF bias, 301
right of first refusal (ROFR), 59, 61
ring-field, 25
ring-opening metathesis polymerization (ROMP), 424
risk management, 68
Ronchi, 208
Ronler Processing 1 (RP1), 559
roughening of surfaces, 15, 18, 30, 32, 265, 286, 290
roughness of interfaces, 339
specification, 171
Rut(0001), 248
Ru erosion, 275
Ruthenium, 231
sagittal plane, 151
Sandia National Laboratories (SNL), 9, 56, 187, 229
scanner, 596, 601, 604, 608–610, 613, 622, 626
EUVL, 104, 193, 352, 493
scanning electron microscopy (SEM), 34, 359, 386, 399, 417, 421, 447
scanning probe-based mechanical nanomachining, 357
scanning tunneling microscopy (STM), 389
Scheimpflug condition, 141
Index 671
<table>
<thead>
<tr>
<th>Term</th>
<th>Page Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Schematics of EUV source</td>
<td>106</td>
</tr>
<tr>
<td>Schwarzschild</td>
<td>2</td>
</tr>
<tr>
<td>Objective</td>
<td>139</td>
</tr>
<tr>
<td>1/8 reduction optic</td>
<td>386</td>
</tr>
<tr>
<td>Secondary electrons</td>
<td>236</td>
</tr>
<tr>
<td>Secondary-ion mass spectroscopy (SIMS)</td>
<td>247</td>
</tr>
<tr>
<td>Secondary ion source</td>
<td>339</td>
</tr>
<tr>
<td>Selectively etch</td>
<td>301</td>
</tr>
<tr>
<td>Self-sputtering</td>
<td>271</td>
</tr>
<tr>
<td>Semiconductor Equipment and Materials</td>
<td>69, 491, 588</td>
</tr>
<tr>
<td>International (SEMI)</td>
<td></td>
</tr>
<tr>
<td>Semiconductor Industry Association (SIA)</td>
<td>65, 99, 638</td>
</tr>
<tr>
<td>Semiconductor Research Corporation (SRC)</td>
<td>65, 86, 99</td>
</tr>
<tr>
<td>SEMI E10</td>
<td>619</td>
</tr>
<tr>
<td>SEMI E35</td>
<td>592, 639</td>
</tr>
<tr>
<td>SEMI E79</td>
<td>619</td>
</tr>
<tr>
<td>SEMI P37</td>
<td>329</td>
</tr>
<tr>
<td>SEMI P38</td>
<td>326, 353</td>
</tr>
<tr>
<td>SEMI P40</td>
<td>353, 483, 504</td>
</tr>
<tr>
<td>Send-ahead (SAHD)</td>
<td>611</td>
</tr>
<tr>
<td>Shack-Hartmann wavefront sensor (SHWS)</td>
<td>216</td>
</tr>
<tr>
<td>Shadowing effect</td>
<td>351</td>
</tr>
<tr>
<td>Shearing</td>
<td>208, 213</td>
</tr>
<tr>
<td>Sidewall angle</td>
<td>37</td>
</tr>
<tr>
<td>Silicide</td>
<td>338</td>
</tr>
<tr>
<td>Silicon-nitride</td>
<td>209</td>
</tr>
<tr>
<td>Silicon oxynitride (SiO<sub>x</sub>N)</td>
<td>400</td>
</tr>
<tr>
<td>Silicon resists</td>
<td>422</td>
</tr>
<tr>
<td>Silicon Valley Group Lithography (SVGL)</td>
<td>61</td>
</tr>
<tr>
<td>Silicone-based positive photoresist (SPP)</td>
<td>386</td>
</tr>
<tr>
<td>Single-layers resist (SLR)</td>
<td>401</td>
</tr>
<tr>
<td>Six-mirror EUVL projection systems</td>
<td>149</td>
</tr>
<tr>
<td>Smoothing substrate particles</td>
<td>339</td>
</tr>
<tr>
<td>Sn contamination</td>
<td>300</td>
</tr>
<tr>
<td>Sn DPP</td>
<td>122</td>
</tr>
<tr>
<td>Sn fluence</td>
<td>278</td>
</tr>
<tr>
<td>Sn halides</td>
<td>280</td>
</tr>
<tr>
<td>Sn LPP</td>
<td>125</td>
</tr>
<tr>
<td>Sn surface dose</td>
<td>275</td>
</tr>
<tr>
<td>Sn-Ru interaction</td>
<td>271</td>
</tr>
<tr>
<td>Snow plough model</td>
<td>111</td>
</tr>
<tr>
<td>Soft bake (SB)</td>
<td>409, 441, 626</td>
</tr>
<tr>
<td>Soft x-ray projection lithography (SXPL)</td>
<td>6, 10, 40, 43, 99, 252, 438, 512</td>
</tr>
<tr>
<td>Solar and heliospheric observatory (SOHO)</td>
<td>228</td>
</tr>
<tr>
<td>Source cleanliness</td>
<td>104</td>
</tr>
<tr>
<td>Components and their lifetimes</td>
<td>125</td>
</tr>
<tr>
<td>EUV, 104</td>
<td></td>
</tr>
<tr>
<td>Requirements</td>
<td>104, 106, 496</td>
</tr>
<tr>
<td>Size</td>
<td>113, 118, 119, 496</td>
</tr>
<tr>
<td>Sources of flare</td>
<td>551</td>
</tr>
<tr>
<td>Spectral purity</td>
<td>104</td>
</tr>
<tr>
<td>Spectral purity filter (SPF)</td>
<td>106, 118, 122, 458, 464</td>
</tr>
<tr>
<td>Transmission</td>
<td>116, 117</td>
</tr>
<tr>
<td>Spectral reflectivity of a ML-coated mirror</td>
<td>108</td>
</tr>
<tr>
<td>Spherical energy sector analyzer (ESA)</td>
<td>292</td>
</tr>
<tr>
<td>Spin-on glass</td>
<td>181</td>
</tr>
<tr>
<td>Sputtering yield</td>
<td>291, 309</td>
</tr>
<tr>
<td>Standard mechanical interface (SMF)</td>
<td>333, 451</td>
</tr>
<tr>
<td>Statements of work (SOW)</td>
<td>90</td>
</tr>
<tr>
<td>Statistical process control (SPC)</td>
<td>628</td>
</tr>
<tr>
<td>Stepper</td>
<td>589, 601, 604, 609, 610, 624, 626, 629, 632–634, 640</td>
</tr>
<tr>
<td>Strehl ratio</td>
<td>148, 164, 213</td>
</tr>
<tr>
<td>Stress reduction</td>
<td>340</td>
</tr>
<tr>
<td>Subaperture polishing</td>
<td>28</td>
</tr>
<tr>
<td>Subfield Exposure Station (SES)</td>
<td>518, 522</td>
</tr>
<tr>
<td>Sub-resolution assist features (SRAF)</td>
<td>620</td>
</tr>
<tr>
<td>Substrate</td>
<td></td>
</tr>
<tr>
<td>Defect</td>
<td>332</td>
</tr>
<tr>
<td>Phase defects</td>
<td>35</td>
</tr>
<tr>
<td>Super acids</td>
<td>405</td>
</tr>
<tr>
<td>Super-Advanced Electronics Technologies</td>
<td>19</td>
</tr>
<tr>
<td>(ASET)</td>
<td></td>
</tr>
<tr>
<td>Supersonic hydrocleaning (SHC)</td>
<td>361</td>
</tr>
<tr>
<td>Surface</td>
<td></td>
</tr>
<tr>
<td>Chemistry</td>
<td>246</td>
</tr>
<tr>
<td>Erosion</td>
<td>286</td>
</tr>
<tr>
<td>Figure</td>
<td>27</td>
</tr>
<tr>
<td>Finish</td>
<td>27</td>
</tr>
<tr>
<td>Oxide</td>
<td>337</td>
</tr>
<tr>
<td>Surface-imaging resist</td>
<td>36</td>
</tr>
<tr>
<td>Synchrotron</td>
<td>9, 37, 207, 221</td>
</tr>
<tr>
<td>System end-of-life transmission</td>
<td>107</td>
</tr>
<tr>
<td>Systematic errors</td>
<td>176, 218, 219</td>
</tr>
<tr>
<td>T tandem stage</td>
<td>624</td>
</tr>
<tr>
<td>Target accuracy</td>
<td>207</td>
</tr>
<tr>
<td>Telecentric</td>
<td>9, 24</td>
</tr>
<tr>
<td>Test elements group (TEG)</td>
<td>496</td>
</tr>
<tr>
<td>Test structure</td>
<td>403</td>
</tr>
<tr>
<td>Tetramethylammonium hydroxide (TMAH)</td>
<td>422</td>
</tr>
<tr>
<td>Thermal</td>
<td></td>
</tr>
<tr>
<td>And radiation loads</td>
<td>305</td>
</tr>
<tr>
<td>Loading of illuminator</td>
<td>497</td>
</tr>
<tr>
<td>Stability</td>
<td>286, 312</td>
</tr>
<tr>
<td>Thermo-opto-mechanical design</td>
<td>267</td>
</tr>
<tr>
<td>Throughput (TPT)</td>
<td>587, 589, 591, 596, 601, 612, 613, 618, 625, 626</td>
</tr>
<tr>
<td>Time of arrival</td>
<td>293</td>
</tr>
<tr>
<td>Of flight spectra</td>
<td>293</td>
</tr>
<tr>
<td>Tinsley</td>
<td>66</td>
</tr>
</tbody>
</table>
tool
 core, 459, 479
 subsystems, 459
 utilization, 589
top surface imaging (TSI), 394
total defects, 340
total integrated scatter (TIS), 557
total system wavefront error, 31
track, 589, 590, 595, 604, 607, 616, 617, 622, 625, 626
transition region and coronal explorer (TRACE), 228
transmission electron microscope (TEM), 33, 334
 characterization, 316
transmission image sensor (TIS), 217
transmission mask (TM), 141
trapped friction, 177
TRW, 66
twin scan dual-stage, 624
two-aspherical-mirror imaging system, 12

U
ultrahigh vacuum (UHV), 451, 464, 480
ultra-low-expansion (ULE) light-weighted chucks, 461
ultra-low-expansion (ULE) (Corning glass), 174, 329
ultra-pure water (UPW), 361, 617
Ulimatech, 66
ultrathin resist (LTR), 397
unexposed film thickness loss (UFTL), 405
United States Advanced Lithography (USAL), 61
United States National EUV Lithography Program, 12
utility requirements, 114
utilization, 589, 593, 601, 606, 613, 619, 622, 628, 632, 634, 636
UV cleaning, 361

V
vacuum
 conditions, 467
 system, 464, 483
vacuum ultraviolet (VUV), 118, 266
vector-shaped beam (VSB), 626
Veeco, 66
visible-light interferometry, 28, 89, 206, 219
visible microscope, 477
Virtual National Laboratory (VNL), 59

W
wafer
 alignment sensor, 507
 and reticle chucks, 461
 and reticle loading, 461
 and reticle stages, 459
 chuck, 505
 focus sensor, 506
 handling system, 508
 size, 601, 607, 622
 throughput budget, 510
 throughput model, 109
wafers/hour (WPH), 104, 109, 606, 613, 624
wafers/mask (WPM), 590, 596, 597, 603
wall plug-to-laser light CE (wall-plug efficiency), 112, 115
water vapor, 229
wavefront, 205, 206, 222
wavefront error (WFE), 145
Wölter ellipsoid collector shells, 455
Wölter type, 117
Wölter-type mirror, 265
worldwide EUV interest, 86

X
x-ray diffraction (XRD), 315, 336
x-ray photoelectron spectroscopy (XPS), 305
x-ray proximity lithography (XPL), 4, 10
Xe, 270
Xe DPP, 121
Xe LPP, 124

Y
y-monopole, 538
yttrium aluminum garnet (YAG), 37, 112, 113, 115, 123, 124, 344, 363, 471, 477

Z
Zernike, 219
 expansion, 140
 terms, 163
Zerodur, 174, 175
zone plate, 216, 342
ZrSiO, 618