Index

#
10×-II Schwarzschild, 14
193 nm, 588, 606, 616, 629, 634
248 nm, 606, 613, 616

A
aberration, 205, 207, 213
correction, 24
absolute ion flux, 295
absorber defect inspection, 357
repair, 357
absorber layer, 349
absorber stack etch, 355
absorption
data, 643
depth of Si, 4
absorption coefficient, 36
definitions, 391
of EUV photoresists, 391
absorption cross-sections of the elements, 392
acid diffusion, 395, 426
actinic inspection, 342
Advanced Light Source (ALS), 140, 177, 213, 241, 408
Advanced Micro Devices (AMD), 60
Advanced Technology Program (ATP), 41
aerial image, 208, 470, 471, 475
monitors, 217
sensor, 507
Airy pattern, 163
alpha class lithography tool, 87
alternating phase shift mask (APSM), 371, 372, 603
American Institute of Physics (AIP), 242
amorphous, 239
amortize, 627, 635
amplitude defect, 343
annealing temperatures, 315
annular illumination, 522
antireflective coating (ARC), 328, 350, 401
apodization, 136, 171, 194
appearing dose (Da), 565
application specific integrated circuit
(ASIC), 597, 600, 603, 627, 635, 638
asphere fabrication, 27
aspheric
departure, 24, 137, 143, 467
mirror, 15, 31, 154
surfaces, 2, 18
Association for Super-Advanced Electronics
Technologies (ASET), 19, 70, 420
atomic force microscopy (AFM), 16, 340, 528
atomic hydrogen, 230
atomic layer deposition (ALD), 180
attenuated phase shift mask, 366
at-wavelength inspection, 34, 35
Auger electron spectroscopy (AES), 246, 303
autofocus, 467
automated material handling systems
(AmHS), 607, 608
automated process control (APC), 628
B
backside conductive coating, 349, 353
bandwidth (BW), 213
barrier layers, 310
beamline, 115, 213, 217, 221, 241, 422, 613
Be K edge, 188
Bennett relation, 110
beta class, 220
bilayer period, 287
bilayers, 290
binary chrome on glass (BIN COG), 603, 618
binary collision approximation (BCA), 271
boron-containing resists, 425
Bossung curve, 352, 472, 487, 520
bottom antireflective coating (BARC), 589
Bragg
equation, 336
reflectors, 135
wavelength, 21
bright-field signal, 342
Brookhaven National Laboratory (BNL), 37, 397
buffer layer, 349
etch, 360
C
calibrated debris diagnostic tool, 292
calixarenes, 421
Canon, 66
capping layer, 231, 302
carbon
 contamination, 35
deposition, 229
catoptric projection system, 136
cell projection (CP), 626
Center for Plasma Material Interactions (CPMI), 292
Center for X-Ray Optics (CXRO), 297
database, 193, 297, 388, 643
centroid wavelength, 335
changes in joint requirements for EUV sources, 105
charge-coupled device (CCD), 209, 215, 344
charge exchange, 295
charging, 359
chemically amplified photoresist (CAR), 404, 433, 604
chemical-mechanical polishing (CMP), 395, 403, 507
chemical vapor deposition (CVD), 189
chromatic vignetting, 23
chuck nonflatness, 504
cleaning
 cycles, 280
 in-situ, 120, 228, 232
 optics contamination, 249
clear aperture (CA), 165
clear defect, 357
clearing dose
 (Dc), 565
 (Eo), 386, 428
coefficients of thermal expansion (CTE), 173, 329
coherent flux, 213
collector
 lifetime, 39, 281
 mirror, 265, 287
 reflectivity, 117
competitive technologies, 78
dependent degradation calculations, 108
counter-controlled surfacing (CCOS), 27
counter-generated holographic (CGH) nulls, 28, 153, 155
condenser
 mirrors, 38
 optics, 179
confocal microscopy, 344
consumables, 589, 613, 616
die size, 597, 598, 600, 603, 627
contact size variation, 548
deposition, 270, 286
density reduction, 340
depth of focus (DOF), 21, 408, 517, 525, 629
design of experiment (DOE), 411
die size, 597, 598, 600, 603, 639
diffraction-limited, 213
diffusion barriers, 286
digital signal processor (DSP), 596
dimethylaminopentamethyldisilane (DMAPMDS), 395
dioptic projection lens, 151
direct cover with absorber pattern, 347
discharge-produced plasma (DPP), 109, 286, 453, 472, 629
dose
 sensor, 507
d to clear (Eo), 559, 624
d spacing, 333
dual pod concept, 508
dummification, 568
DUV contrast, 328
dynamic random access memory (DRAM), 596, 597, 600, 603, 627, 639
E

e-beam
- repair technology, 359
- writing, 355

electric-field foil trap, 299
electrode
- lifetime, 125
- materials, 292
electron beam, 209
- repair, 346
electron-beam projection lithography (EPL), 66, 588
electron binding energies, 653
electrostatic chuck, 349, 461, 482, 503
embedded phase shift masks (ePSM), 368, 570
ergy sector analyzer (ESA), 292
ingineered MLs, 89
engineering test stand (ETS), 72, 147, 517–519
camera, 178
environmentally stable chemically amplified photoresists (ESCAP), 404, 407
erosion, 270, 290
- rate, 271, 297
etch
- rates, 302
- selectivity, 356
etch stop layer (ESL), 367
etched binary mask, 364
étendue, 150
- mismatch, 118
- of source output, 104
E10 RAM, 624
EUV
- absorbance, 393
- attenuation, 368
- blank requirements, 327
- collection and illumination system, 455
- critical issues, 105
- illumination, 473
- imaging objective, 453
- imaging tool, 344, 450
- interferometry, 31, 221
- microscope, 475
- microstepper, 138, 453
- objective, 475
- optics, 453
- PAG, 426
- radiation monitoring, 463
- reflectometry, 336
- reticle aerial image, 485
source, 103, 453, 472
- performance, 112
- power measurements, 115
- requirements, 106
- technology limits, 116

EUVL, 1–3, 7, 16, 104
- optical design considerations, 135
- printing, 90
EUV LLC, 2, 59
- business model, 60
- funding, 76
- organizational structure, 63
- program goals, 61
EUV mask
- fabrication process, 327
- technology, 326
EUV-reflective ML coating, 327
EUV-2D resist, 393, 524
exact constraint design, 177
exposure
- dose control, 469
- mechanisms, 426
- sensitivity curves, 390
- tool cell, 589, 606, 611, 622, 635
- laser, 613
- throughput, 589
- wavelength, 21
exposure-defocus (E-D) process window, 170
exposure latitude (EL), 519, 629
extended DUV resists, 90
extension of DUV, 78
Extreme Ultraviolet Imaging Telescope (EIT), 228
Extreme Ultraviolet Lithography System Development Association (EUV A), 19
Extreme UV Alpha Tools Integration Consortium (EXTATIC), 19
Extreme UV Concept Lithography Development System (EUCLIDES), 19

F

Faraday cup, 292
far field (FF), 210, 264
fast-ion mitigation, 296
fast ions, 295
field image alignment (FIA) sensor, 507
field size, 501, 596, 598, 607, 613, 627
figure
- aberrations, 207
- error, 207
film quantum yield, 434
finite element analysis (FEA), 266, 459
flare, 15, 169, 551
- calculation, 551, 557
- mitigation, 568
flare variation compensation (FVC), 566
flatness requirement, 340
Flying Circus (FC) project, 115
focus budget, 509
focus exposure latitude, 630
focus exposure matrix (FEM), 519
focused ion beam (FIB), 345
foil trap, 126, 298
Foucault, 208, 210
Fourier transform infrared spectroscopy (FTIR), 247
Free electron lasers (FEL), 221
front-opening unified pod (FOUP), 628
full-width half maximum (FWHM), 524
Fundamenteel Onderzoek der Materie Institute (FOM), 19

G
gas
curtain mitigation, 299
flow, 298
jet, 38
transmission, 117
gas-assisted etching (GAE), 357
geometrical collector efficiency, 117
glass-transition temperature (Tg), 395
good wafer level exposure (GWLE), 109, 587, 588, 595, 604, 636, 637
graphical user interface (GUI), 96, 464
grating, 212
grazing angle collector, 261
grazing-incidence (GI), 106, 263

H
half pitch (HP), 42, 261
Hartmann
test, 208
wavefront sensor, 215
heat stability, 316
Henke Tables, 36
hexamethyldisilazane (HMDS), 399
high-power laser status, 123
high-purity fused silica (HPFS), 618
high-resolution imaging, 488
high-spatial-frequency errors, 170
high spatial frequency roughness (HSFR), 16, 330
high volume manufacturing (HVM), 104
Himeji Institute of Technology (HIT), 19, 41
horizontal/vertical (HV) effects, 533
hydrogen silsesquioxane (HSQ), 422

I
IBM, 60
I-line, 599, 601, 602, 606, 610, 613, 615, 616
Illinois ion energy reduction technique (INERT), 298
illumination optics, 12, 494
design, 494
illumination uniformity, 468
image
flare, 30
placement, 617, 627, 629
image log slope (ILS), 406, 567
image placement error (IPE), 149, 331
imaging layer (IL), 395, 399
implantation, 286
implementation delays, 77
inductively coupled plasma, 302
Infineon, 60
in-plane distortion (IPD), 354, 504
in-situ
 cleaning, 301
metrology, 246
instantaneous clear aperture (ICA), 165
integrated energy stability, 104
integrated product scheduling (IPS), 628
Intel, 60
intellectual property (IP), 59
disclosures, 76
portfolio, 76
interdiffusion
 layers, 312
 of MLs, 497
interface stabilization, 312
interferogram, 206
interferometer, 207, 208
interferometry, 206, 219–222
intermediate focus (IF), 104, 106, 262, 316, 463, 495
International SEMATECH, 65
International SEMATECH Manufacturing Initiate (ISMI), 600
International Technology Roadmap for Semiconductors (ITRS), 42, 58, 127, 489
inverse bremsstrahlung absorption (IBA), 111
inverse Cassegrain absorption (ICA), 165
inverse Cassegrain absorption (ICA), 165
ion
 energy, 293
gun, 292
polishing, 339
spectra, 293
ion beam figuring (IBF), 331
ion-beam projection lithography (IPL), 66, 588
ion beam sputter deposition (IBSD), 34, 333
ion-enhanced etching, 301

J
Japan Society for Precision Engineering (JSPE), 42, 50
joint development agreement (JDA), 66, 450
joint development program (JDP), 59
joint requirements, 107
 for EUV sources, 104

K
kinetic energy, 111, 296
kirk test, 559
knife-edge, 208, 210
Index

k₁, 516, 603, 619, 630, 631
KRS photoresists, 413

L
lactonization polarity switch, 419
laser
 ablation, 357
 excimer, 9, 111, 115, 451, 494, 589, 605,
 610, 624
 plasma source, 9
 power, 123
 source, 604, 607, 612, 613, 624, 629, 633,
 636
laser-produced plasma (LPP), 111, 285, 629
laser shock wave cleaning (LSC), 361, 363
Lawrence Berkeley National Laboratory (LBNL), 213, 216
Lawrence Livermore National Laboratory (LLNL), 219
layer mixing, 286
layered synthetic microstructure (LSM), 3
Li DPP, 123
lifetime, 290
light element gas, 299
light scattering and surface roughness, 553
line edge roughness (LER), 42, 428, 539, 543
 versus Eₘₚₚ, 399
line edge roughness transfer function (LTR),
 539
line width roughness (LWR), 437
liquid-droplet targets, 39
lithium salt of ethylenediamine (LiEDA), 36
local oxidation of silicon (LOCOS), 16
logic, 596, 597, 604, 607, 627
Los Alamos National Laboratory (LANL), 45
low-angle x-ray diffraction, 336
low defect deposition (LDD), 67
low departure aspheric reflectors, 15
low-frequency (figure) errors, 165
low-pressure chemical vapor deposition (LPCVD), 16
low-temperature oxide (LTO), 16, 17
low thermal expansion material (LTEM), 32,
 327

M
magnetic
 confinement, 296
 field, 297
magnetohydrodynamics (MHD), 111
magnetorheological finishing (MRF), 175,
 331
magnetron sputtering, 286, 334
Marechal criterion, 31, 164, 168
mask, 325, 587
 cleaning, 361
 format, 326
 handling, 353
 patterning, 355
 roughness, 543, 549
 substrate, 328, 329
Mask Blank Development Center (MBDC), 90, 341
mask blank fabrication, 332
mask error enhancement factor (MEEF), 574
maskless lithography (ML2), 631
mass-limited target, 39
master oscillator–power amplifier (MOPA), 123
material characterization, 294
maximum solid angle input to illuminator, 104
mean time between failure (MTBF), 108,
 619, 622
mean time to repair (MTTR), 619, 622
mean time to test (MTTT), 611
membrane micropore filtration, 625
Metal-oxide semiconductor (MOS) devices, 11
demonstration, 16
MET-1K resist, 525
microchannel plates (MCP), 293
Microelectronics Development for European
 Applications+ (MEDEA+), 19
micro-exposure tool (MET), 138, 140, 216,
 530
 camera, 178
 projection optics performance summary,
 143
Micron, 60
microprocessing unit (MPU), 597, 600, 603,
 606, 609
microstepper design parameters, 140
mid-spatial-frequency errors, 169
mid-spatial-frequency roughness (MSFR),
 15, 30, 140, 329
minimum feature size (MFS), 634
mirror
 lifetimes, 292
 reflectivity, 120
mitigation
 debris, 37, 106, 116, 237
 thermal, 121
modified alternating phase shift mask, 372
modified Bragg’s law, 333
modified illumination, 522, 533
modulation transfer function (MTF), 542
molecular beam epitaxy (MBE), 189, 250
Mo/Si, 228, 618
Motorola, 60
multilayer (ML), 135, 228
 added figure errors, 194
 adders, 340
 characterization, 335
 ...
coatings, 187
defect compensation, 347
defect inspection, 342
defect repair, 345
deposition, 189, 332
materials, 188
resists, 394
thickness specifications, 193

N
nano imprint lithography (NIL), 631
nanostructure, 238
National Institute for Standards and Technology (NIST), 65
National Synchrotron Light Source (NSLS), 203
Nd:YAG, 123
negative chemically amplified resist, 388
negative tone resists, 419, 425, 569
next-generation lithography (NGL), 62, 285, 488
Nikon, 66
Nikon Step and Repeat System (NSR), 507
non-actinic inspection, 342
nonflatness, 331
normal-incidence (NI)
angle, 106
mirrors, 290
molybdenum-silicon (Mo/Si) multilayer (ML), 136
reflective optics, 3
normalized image log slope (NILS), 472, 570
NPNPNP configurations, 154
n-type metal–oxide semiconductor (NMOS), 16, 17, 606
null tests, 218
numerical aperture (NA), 21, 22, 136, 496, 498

O
off-axis illumination (OAI), 570, 624
Office of the Director of Defense Research & Engineering (DDR&E), 65
Offner relay, 154
Offner ring-field imaging system, 7
opaque defect, 357
optical
constants, 192, 643
design, 269
microscope, 471
optical proximity correction (OPC), 347, 607, 620, 631
Optical Society of America (OSA), 9, 42
optical transfer function (OTF), 539
optics, 219, 230
cleaning, 300
fabrication, 89
lifetime, 232
out-of-band (OOB) radiation, 118
out-of-plane distortion, 354, 504
overhead (OH), 592, 593, 607, 609, 610, 612, 617, 623, 626, 634
overlay (OL), 611, 624, 628, 633, 634, 637
overlay budget, 509
oxidation, 229

P
partial coherence, 524
particle, 508
flux, 291
patents, 93
pattern transfer of UTR into hard masks, 400
Paul Scherrer Institut (PSI), 418
peak
reflectance, 333
reflectivity, 312
wavelength, 312
penetration depth, 6
Petzval sum, 152, 156
phase
bumps, 163
defects, 33, 343, 345
errors, 163
phase-measuring interferometer (PMI), 27
phase-measuring microscopy (PMM), 176
phase shift concept, 363
phase shifter, 368
phase shifting, 212
phase-shifting diffraction interferometer (PSDI), 176, 219
phase-shifting point diffraction interferometer (PS/PDI), 20, 179, 211
phase-shift mask (PSM), 363, 527
photo acid generators (PAGs), 391
photochemical decomposition mechanism of PMMA, 417
photoelectron emission microscopy (PEEM), 344
photon energies, 659
photoresist, 221, 383
physical constants, 652
physical vapor deposition (PVD), 189
Physikalisch-Technische Bundesanstalt (PTB), 32, 241
pinch effect, 109
pinhole, 210–213
defects, 397
pits, 340
planarization layer (PPL), 395
plasma-assisted cleaning by electrostatics (PACE), 362
plasma-enhanced chemical vapor deposition (PECVD), 249
plasma expansion, 286, 292
plasma sources, 109
Index

PNNPNP configuration, 153
PNPPNP configuration, 150
PN114, 388
point diffraction, 208, 213
point-diffraction interferometry (PDI), 210
point-spread function (PSF), 163, 524, 555
polybutene-1 sulfone (PBS), 36
polycrystalline, 239
polyhydroxystyrene (PHS), 413
polyimide, 181
polymethylmethacrylate (PMMA), 385, 389, 416
exposure mechanism, 417
polystyrene latex (PSL), 332
post-exposure bake (PEB), 355, 388, 395, 409, 414, 429
power spectral density (PSD), 30, 167, 554
PPNPNP configuration, 152
preventative maintenance (PM), 593
printed CD bias, 351
process window, 520, 524, 551
productivity, 586, 599, 600, 603, 606, 610, 613, 619, 622, 627, 629, 635, 639, 640
profilometer, 303
PRogramme Extreme UV (PREUV), 19, 100
projection optics (PO), 163, 207, 229, 498
projection optics box (POB), 566
projection optics performance summary for the ETS, 148
proximity effect, 355
pulsed foil trap mitigation, 298
pupil, 212

Q
quantum yield, 387, 418
quartz crystal, 298
quartz crystal microbalance (QCM), 126

R
Rayleigh
constant, 516
criterion, 31
reactive ion etching (RIE), 301, 386
reflection
coefficient, 273
of fast particles, 272
reflection mask (RM), 13, 141, 386
reflective
masks, 7
ML coatings, 2
reflectivity, 3, 191, 233, 287, 560
of MLs, 5, 21, 41
collector, 117
degradation, 104, 120, 241, 265, 269, 286, 290, 297, 345
loss, 290
relative humidity (RH), 416
reliability, availability, and maintainability (RAM), 619
repeller field, 38
repetition frequency, 104, 497
Research Development Center (RDC), 81
residual gas analyzer (RGA), 302, 467
resist
devolution, 450
exposure, 470
sensitivity, 119
sidewall profile, 23
resolution (RES), 21, 516
enhancement, 373, 516, 522
resolution enhancement technique (RET), 620, 624, 630, 640
resolution, LER, sensitivity (RLS), 384, 436
reticle, 105, 107, 109, 138, 163, 335, 459, 461, 475, 589, 601, 605, 607, 617, 620, 624, 626, 628–630, 633, 634, 639
and wafer stages, 502
chuck, 503
focus sensor, 506
handling system, 508
imaging, 475
imaging actinic microscope, 450, 470
loader, 483
stages and chuck, 479
reticle imaging microscope (RIM), 470
return on investment (ROI), 489
RF bias, 301
right of first refusal (ROFR), 59, 61
ring-field, 25
ring-opening metathesis polymerization (ROMP), 424
risk management, 68
Ronchi, 208
Ronler Processing 1 (RP1), 559
roughening of surfaces, 15, 18, 30, 32, 265, 286, 290
roughness of interfaces, 339
specification, 171
Rut(0001), 248
Ru erosion, 275
Ruthenium, 231

S
sagittal plane, 151
Sandia National Laboratories (SNL), 9, 56, 187, 229
scanner, 596, 601, 604, 608–610, 613, 622, 626
EUVL, 104, 193, 352, 493
scanning electron microscopy (SEM), 34, 359, 386, 399, 417, 421, 447
scanning probe-based mechanical nanomachining, 357
scanning tunneling microscopy (STM), 389
Scheimpflug condition, 141
schematics of EUV source, 106
Schwarzschild, 2
 objective, 139
 1/8 reduction optic, 386
 secondary electrons, 236
 secondary-ion mass spectroscopy (SIMS), 247
secondary ion source, 339
selectively etch, 301
self-sputtering, 271
Semiconductor Equipment and Materials International (SEMI), 89, 491, 588
Semiconductor Industry Association (SIA), 65, 99, 638
Semiconductor Research Corporation (SRC), 65, 86, 99
SEMI E10, 619
SEMI E35, 592, 639
SEMI E79, 619
SEMI P37, 329
SEMI P38, 326, 353
SEMI P40, 353, 483, 504
send-ahead (SAHD), 611
Shack-Hartmann wavefront sensor (SHWS), 216
shadowing effect, 351
shearing, 208, 213
sidewall angle, 37
silicide, 338
silicon-nitride, 209
silicon oxynitride (SiO$_x$N), 400
silicon resists, 422
Silicon Valley Group Lithography (SVGL), 61
silicone-based positive photoresist (SPP), 386
single-layers resist (SLR), 401
six-mirror EUVL projection systems, 149
smoothing substrate particles, 339
Sn contamination, 300
Sn DPP, 122
Sn fluence, 278
Sn halides, 280
Sn LPP, 125
Sn surface dose, 275
Sn-Ru interaction, 271
snow plough model, 111
soft bake (SB), 409, 441, 626
soft x-ray projection lithography (SXPL), 6, 10, 40, 43, 99, 252, 438, 512
solar and heliospheric observatory (SOHO), 228
source
 cleanliness, 104
 components and their lifetimes, 125
EUV, 104
requirements, 104, 106, 496
size, 113, 118, 119, 496
sources of flare, 551
spectral purity, 104
spectral purity filter (SPF), 106, 118, 122, 458, 464
 transmission, 116, 117
spectral reflectivity of a ML-coated mirror, 108
spherical energy sector analyzer (ESA), 292
spin-on glass, 181
spattering yield, 291, 309
standard mechanical interface (SMI), 333, 451
statements of work (SOW), 90
statistical process control (SPC), 628
stepper, 589, 601, 604, 609, 610, 624, 626, 629, 632–634, 640
Strehl ratio, 148, 164, 213
stress reduction, 340
subaperture polishing, 28
Subfield Exposure Station (SES), 518, 522
sub-resolution assist features (SRAF), 620
substrate
 defect, 332
 phase defects, 35
super acids, 405
Super-Advanced Electronics Technologies (ASET), 19
supersonic hydrocleaning (SHC), 361
surface
 chemistry, 246
 erosion, 286
 figure, 27
 finish, 27
 oxide, 337
surface-imaging resist, 36
synchrotron, 9, 37, 207, 221
system end-of-life transmission, 107
systematic errors, 176, 218, 219
T
tandem stage, 624
target accuracy, 207
telecentric, 9, 24
test elements group (TEG), 496
test structure, 403
tetramethylammonium hydroxide (TMAH), 422
termal
 and radiation loads, 305
 loading of illuminator, 497
 stability, 286, 312
thermo-opto-mechanical design, 267
throughput (TPT), 587, 589, 591, 596, 601, 612, 613, 618, 625, 626
time
 of arrival, 293
 of flight spectra, 293
Tinsley, 66
Index 673

V

visible microscope, 477
Virtual National Laboratory (VNL), 59

W

wafer
alignment sensor, 507
and reticle chuck, 461
and reticle loading, 461
and reticle stages, 459
chuck, 505
focus sensor, 506
handling system, 508
size, 601, 607, 622
throughput budget, 510
throughput model, 109
wafers/hour (WPH), 104, 109, 606, 613, 624
wafers/mask (WPM), 590, 596, 597, 603
wall plug-to-laser light CE (wall-plug efficiency), 112, 115
water vapor, 229
wavefront, 205, 206, 222
wavefront error (WFE), 265
Wölter ellipsoid collector shells, 455
Wölter type, 117
Wölter-type mirror, 265
worldwide EUV interest, 86

X

x-ray diffraction (XRD), 315, 336
x-ray photoelectron spectroscopy (XPS), 305
x-ray proximity lithography (XPL), 4, 10
Xe, 270
Xe DPP, 121
Xe LPP, 124

Y

y-monopole, 538
yttrium aluminum garnet (YAG), 37, 112, 113, 115, 123, 124, 344, 363, 471, 477

Z

Zernike, 219

expansion, 140
terms, 163
Zerodur, 174, 175
zone plate, 216, 342
ZrSiO, 618

Tool
core, 459, 479
subsystems, 459
utilization, 589
top surface imaging (TSI), 394
total defects, 340
total integrated scatter (TIS), 557
total system wavefront error, 31
track, 589, 590, 595, 604, 607, 616, 617, 622, 625, 626
transition region and coronal explorer (TRACE), 228
transmission electron microscope (TEM), 33, 316
correlation, 316
transmission image sensor (TIS), 217
transmission mask (TM), 141
trapped friction, 177
TRW, 66
twin scan dual-stage, 624
two-aspherical-mirror imaging system, 12

Ultrahigh vacuum (UHV), 451, 464, 480
ultra-low-expansion (ULE) light-weighted chucks, 461
ultra-low-expansion (ULE) (Corning glass), 174, 329
ultra-pure water (UPW), 361, 617
Ultratech, 66
ultrathin resist (UTR), 397
unexposed film thickness loss (UFTL), 405
United States Advanced Lithography (USAL), 61
United States National EUV Lithography Program, 12
utility requirements, 114
utilization, 589, 593, 601, 606, 613, 619, 622, 628, 632, 634, 636
UV cleaning, 361

Vacuum

conditions, 467
system, 464, 483
vacuum ultraviolet (VUV), 118, 266
vector-shaped beam (VSB), 626
Veeco, 66
visible-light interferometry, 28, 89, 206, 219