References

90. M. Rossi, Th. Ammer, M.T. Gale, A. Maciossek, and J. Söchtig, “Diffractive optical elements for passive infrared detectors,” in *Diffractive Optics and...*
References

Index

Abbe number, 15, 18
aberrations, 71, 97
abrasion, 12, 112
absorption bands, 12, 27
achromatic, 88, 106
acrylic, 1, 19, 27, 135, 147, 194
additives, 30, 135
adhesion, 112, 139
air bearing, 5, 185
alignment, 38, 47, 130
aluminum, 183, 194
anamorphic, 8, 97
angle of incidence, 17, 73, 152
annealing, 204
antireflection, 110, 120
aperture stop, 70, 120, 157
aspect ratio, 85
aspheric, 94, 108, 138
assembly, 199
astigmatism, 75, 84
athermalization, 106
athermat, 106
axial color, 173
back focal length, 69, 83
baffles, 117, 120
barrel, 122, 158
bending, 74, 189
biconvex, 90, 92, 93
birefringence, 12, 25
blackening, 194, 199, 204
blanks, 37, 194
bonding, 12, 115
calcium fluoride, 183
camera, 23, 50, 151
cardinal point, 67
casting, 31
cavities, 43
cemented, 88
centration, 117
chamfer, 122
chief ray, 152, 153
chromatic aberration, 18, 71
cleanliness, 41
clear aperture, 126
coating, 41, 110, 130
coefficient of thermal expansion, 11, 24, 105
collimator, 187
color correction, 2, 102
coma, 75
compensation, 34, 59
compression molding, 36
concentric, 101, 120
conic, 95
cooling, 43, 53
core, 44, 47
cost, 62
CR-39, 31
critical angle, 18, 123
crown, 18
cycle time, 131
cylinder, 138
decenter, 55, 129
degating, 48, 114
density, 21
design examples, 143
detector, 69
diamond turning, 4, 37, 193
diffraction
 efficiency, 102
 gratings, 34
diffractive, 102
dispersion, 18, 71
distortion, 77
dn/dt, 11, 105
drawings, 132
dyes, 113
degating, 48, 114
density, 21
design examples, 143
detector, 69
diamond turning, 4, 37, 193
diffraction
 efficiency, 102
 gratings, 34
diffractive, 102
dispersion, 18, 71
distortion, 77
dn/dt, 11, 105
drawings, 132
dyes, 113
edge break, 84, 92, 138
effective focal length, 68, 187
ejection, 44
ejector, 54
electric, 3
electroform, 33
ellipse, 95
embossing, 35, 175
extruded, 194
eye, 9
filter, 56, 62, 112, 126
flange, 8, 92, 113
flare, 118
flint, 18
f-number (f/#), 71
focal point, 67, 68
focus, 5, 25
freeform, 8
Fresnel lens, 8, 36, 64, 130
fringes, 83, 84, 131
gate, 12
ghost image, 102, 119
glass
code, 21
map, 15
global optimization, 81, 97
gold, 112
grade, 12, 23, 30
gradient, 44, 110, 194
grating, 31
grinding, 31, 36, 114
harmonic, 168
diffractive lens, 105
haze, 28, 188
heads-up display, 7
heater bands, 43
hot runner, 48
hybrid, 3, 11
hydraulic, 3
hyperbola, 95
illumination, 118, 124
image quality, 71
infrared, 12, 113, 168
injection molding, 39
integrated features, 9
interference, 83, 104, 112
interferogram, 180
interferometer, 136, 180
intraocular lens, 9
irregularity, 82, 83, 131
kinofrom, 8
knit line, 59
lateral color, 72, 100
light bulb, 187
machining, 36
magnification, 67, 70
merit function, 80
MIL-SPEC, 85
mirror, 28, 106, 112
modulation transfer function, 78, 144
mold release, 30, 135
molding machine, 39
Monte Carlo, 87, 161
mounting, 37, 70, 93, 107
multiconfiguration, 108
multiorder, 105, 168
mylar, 125
NAS, 20
nickel plating, 50, 196
nodal points, 67
off-axis, 97
OKP4, 3
optic insert, 50
optical design, 21, 65
optical polyester (O-PET), 20
optimization, 80
optomechanical, 113, 114
packaging, 93, 129
packing, 43
painting, 194
parabola, 95
parting line, 40
Index

Petzval, 76
polarization, 12, 25
polycarbonate, 2, 20
polyetherimide, 3
polyethersulfone, 3
polynomial, 96
polystyrene, 1, 20
pressure, 41
principal
 plane, 67
 point, 67
prism, 64
probability, 87, 143, 164
processing, 57
production, 206
 volumes, 5
profiler, 84, 178
profilometry, 178
prototype, 38, 46, 140, 185
pupil, 70
radius, 24, 38, 69
ray, 16
reflection, 26, 111
refraction, 16
refractive index, 15
relative illumination, 152
repeatability, 7, 82
replication, 7, 36, 85
residence time, 42
resolution, 78, 188
roughness, 20, 37, 82
rules of thumb, 90
runner, 48
run-out, 85
sag, 95
scatter, 20, 28, 121
scratch resistance, 32, 110
scratch-dig, 85, 132
sensitivity, 86, 139, 157
service temperature, 23, 114
shrinkage, 33, 34, 59
simulation, 161, 164
slide, 56
small optics, 55
Snell’s law, 16
solvent, 12, 198
spacers, 8, 83, 107, 115
spatial frequency, 144
specific gravity, 21
specification, 30
spectral, 89, 102, 113, 139, 185
spherical aberration, 73
spindle, 37, 94, 116
splitting, 88
sprue, 48
stray light, 102, 118
stress, 117, 202
stroke, 40
test plate, 83, 136
thermolater, 53
thermoplastic, 19
thermoset, 19
tolerance analysis, 81, 125, 139, 157
tolerances, 81
tool servo, 37
total internal reflection, 17, 85, 123
TPX, 2, 20
ultrasonic, 114, 158, 203
ultraviolet, 27, 34
V number, 18
vacuum, 41, 52, 113, 199
variables, 80
vendors, 41, 140
venting, 53
virgin material, 30, 135
water absorption, 25
webcam, 151
wedge, 82, 85
weight, 5, 7
zoom, 108
About the Author

Michael Schaub is currently a Principal Optical Engineer at Raytheon Missile Systems in Tucson, AZ, where he designs and develops visible, infrared, and laser-based electro-optical systems. Previously, he was a Senior Optical Engineer at a precision injection molding plastic optics company. In this role, he was involved in the design, prototyping, testing, and production of plastic optical systems. He has over 10 years experience in the design of plastic optical systems and remains active in the field, through his job, consulting, and teaching an SPIE course.