Index

1/f, 139
1/f noise, 143, 145, 157, 196, 226, 245, 246, 304
2D array, 216
3-dB bandwidth, 136
3-dB frequency, 130

absorptance, 69, 72, 77, 98
 spectral, 69
absorption, 6, 61, 69, 79, 104, 314
absorption coefficient, 71
accuracy, 242, 243
acousto-optical tunable filters, 239
active sources, 6
additive dispersion, 235
air mass, 119
airglow, 121
aliasing, 218
Allan variance, 245
Amici, 231
amorphous silicon, 199
amplifier noise, 143
angle of observation, 32
aperture stop, 23, 24, 40, 41, 218, 220
apparent radiance, 51, 52
area array, 199
array
 2D, 127
detector, 175
 imagers, 199
atmosphere, 6, 28, 104, 235, 314
atmospheric transmission, 51
 loss, 49
aurora, 121
background, 6, 96
test chambers, 259
baffles, 227
bandpass filter, 301
 simple, 303
bandwidth shrinkage factor, 300
barrier height, 187
basic
 radiance, 25
 radiometer, 221
Bayer algorithm, 207
bias voltage, 157
bidirectional reflectance distribution
 function, 65, 73, 317
bidirectional transmittance
 distribution function, 63, 73
blackbody, 77, 121
 curve, 86
 equation, 100
 radiation, 87, 95, 138
 simulator, 33, 83, 132, 226, 242, 255, 261
 source, 49
 spectral radiance, 88
BLIP, 133
blooming, 204
Bode plot, 129
bolometer, 155, 157
Boltzmann’s constant, 85, 178, 181, 189, 313
Bouguer, 4, 30
Butterworth RC filters, 297
calibrate, 247
 a radiometer, 309
calibration, 102, 253, 256
configurations, 241, 256, 257
philosophy, 257
camera equation, 54, 57
carbon arc, 109
carrier lifetime, 170, 172
CCD, 89, 193
noise, 142
central obscuration, 57, 260
charge injection device, 204, 208, 211
charge-coupled device, 203, 204, 208, 211
charge-transfer efficiency, 142, 203
Chauvenet criteria, 247
chief ray, 23
chopper, 109, 218, 225, 235
reflecting, 224
circular variable filter, 236
classical variance, 245
collimators, 259
color films, 201
compact fluorescent lamp, 107, 116, 123
complementary metal-oxide semiconductor, 207
conduction band, 164, 177
cone half angle, 16, 18, 41
configuration factor, 38
cosine\(^3\) law, 31, 32, 33, 58
cosine\(^4\) law, 33–35
Crooke radiometer, 163
cross-sectional area, 20
Curie temperature, 158, 160
current responsivity, 195
cutoff frequency, 130
wavelength, 128, 177
Czerny-Turner, 232

\(D^*, 132, 150, 154, 162, 174, 197\)
photons, 133
\(D^{**}, 133\)
\(D^{*}_{BLIP}, 174, 197\)
dark current, 181, 191
detection, 5
detector quantum efficiency, 131
detectivity, 132
detector, 7
array, 236
\(D^*, 264\)
field of view, 55
noise-equivalent power, 264
silicon, 128
thermal, 128
dielectrics, 102, 123
sources, 108
diffuse, 61, 227
materials, 317
reflector, 75
surface, 65, 73, 316
diffusers, 224
dimensional analysis, 17
direct-method approach, 262
distant extended source configuration, 260
distant small source configuration, 258
Doppler
Gaussian, 110
effect, 111
dynamic resistance, 196

earth
projected area, 51
radiance, 122
reflectance, 51
effective focal length, 19
effective noise bandwidth, 136, 137, 174, 218, 297
Einstein diffusion constants, 190
electrical
resistance, 152
time constant, 159
electroluminescent sources, 117
electron-hole pairs, 195
electro-optical
instrument calibration, 257
system, 263, 299
emission, 6, 76, 83, 104, 314
emissivity, 76
emittance, 76, 98
spectral, 76, 78
emitter, 18
energy gap, 164, 166, 167
entrance pupil, 19, 23, 24, 54, 218, 222, 263, 266
entrance slit, 22
equation of radiative transfer, 36
 basic form, 58
differential form, 46
 integral form, 36
error, 241, 244
 assessment, 256
étendue, 20, 229, 263
exhaust gases, 110
exit pupil, 23, 24, 54, 218
extended source, 34, 222, 223, 264
extrinsic
 photoconductor, 169
 semiconductor, 167
eye damage, 123

\textit{f/}\#, 19, 21, 22, 35, 264
 system parameter, 53
Fabry-Perot, 237, 238
Fastie Ebert, 232
Fermi level, 176
field of view, 6, 220, 222, 251, 263
 instantaneous, 217, 318
 of the detector, 55
field stop, 23, 24, 218, 220, 258
filters, 236
flat-plate solar collectors, 55
FLIR devices, 315
fluorescent lamp, 115
flux density, 11
Foote’s formula, 35
forward-looking infrared, 209, 318
devices, 315
Fourier transform infrared
 spectrometer, 237
frame transfer, 206
 architecture, 205
free spectral range, 230, 237, 239
frequency, 134
Fresnel
 equation, 103
 reflection losses, 71
full frame, 205
 architecture, 204

gain of power, 41
gases, 103, 123
Gaussian, 110, 111, 112, 137, 139
distribution, 147, 244
 noise, 135
GE radiation calculator, 100
generation, 5
generation-recombination noise,
 141, 143, 173, 197
glinit, 319
Golay cell, 163
half-power point, 298
Havens limit, 150
H-D curve, 202
heat capacity, 141, 147
hybrid architecture, 208
illegitimate errors, 248
illuminance, 8, 57
illumination engineering, 38
image irradiance, 55
impedance, 131
incandescent light bulbs, 107
incoherent
 radiation, 250
 sources, 119
index of refraction, 12, 79
infrared, 2
 photodetector array, 209
 sources, 110
Infrared Handbook, The 76, 78, 226
instantaneous field of view, 217, 318
integrating sphere, 5, 46, 47, 224, 261
intensity, 31, 40, 48, 266
interferometer, 237, 238
interline transfer, 206
architecture, 205
International Bureau of Weights and Measures, 254
intrinsic
photoconductor, 169
semiconductor, 164
invariance of throughput, 21
invariant, 20
inverse square law, 37, 45, 48, 258
of irradiance, 17, 30
inversion layer, 198
irradiance, 25, 28, 30, 31, 121, 201, 267, 316
at the detector, 42, 48
inverse square, law of, 17, 30
on the detector, 43, 171
reduction in, 57
responsivity, 129
isotropic source, 58
I-V curve, 191, 194
I-V equation, 189

Johnson noise, 137, 143, 152, 157, 162, 173, 182, 196
Jones method, 262
Jones, R. Clark, 262, 309
Kirchhoff, 4
law, 77, 98, 99, 149, 314
KTC reset noise, 143
Lambert, 4
Lambert-Bouguer-Beer law, 70
Lambertian, 27, 37
approximation, 33, 37, 316
disc, on-axis, 43
disc radiance, 42
source, 32, 310
sphere, 44
sphere, on-axis, 45
Langley, S. P., 155
large-area
blackbody radiation simulator, 261
imaging array, 203
laser, 118, 262
laser-power meter, 262
least-significant bit, 143
lens transmission, 41
light-emitting diode (LED), 83, 105, 117
linear
array, 216
photodiode array, 203
linearity, 131, 247
Littrow, 231, 234
long-wave infrared, 209
Lorentzian, 110, 112, 113
lossless
medium, 44
optical system, 42
LOWTRAN7, 314
lumens, 8
luminance, 8
luminescence, 69, 110
luminescent sources, 83
Lyot stop, 228
magnification, 54, 57
majority carriers, 187
Marcel Golay, 236
marginal ray, 24
matte reflectors, 58
maximum power transfer theorem, 156
of electrical engineering, 172
Index

mean
 earth–sun distance, 50
 square noise voltage, 135, 137
measurement, 4
measurement equation, 250
metallic sources, 108
metals, 102, 123, 156, 176
Michelson, 237
microchannel plates, 184
microphonic, 162
noise, 142
Mie scatter, 119
minority carriers, 187
 concentrations, 190
model validity, 248
modulation transfer function, 202
moments normalization, 307
monochromator, 218, 229, 231, 234
moon and sun
 angular subtense, 51
multiple reflections, 47
muzzle flash, 110

narrowband measurements, 217
national standard, 255
near infrared, 209
near-extended-source, 55
 configuration, 261
near-small-source calibration, 262
negative electron affinity material, 180
Nernst glower, 108
Nicodemus, 66
noise, 131, 134, 243
 1/f, 139, 143, 145, 157, 196,
 226, 245, 246, 304
amplifier, 143
bandwidth, 132, 149
CCD, 142
factor, 143, 184
Gaussian, 135
generation-recombination, 141,
 142, 143, 173, 197
Johnson, 137, 143, 157, 162,
 173, 182, 196
microphonic, 142
power, 298
quantization, 143, 246
shot, 139, 182, 196
temperature, 144
 fluctuation, 141
thermal, 135
thermal fluctuation, 162
triboelectric, 142
white, 135, 146, 246, 303
noise-equivalent
 flux density, 252
 irradiance, 216, 252, 265
 photon flux, 132
 power, 154, 252
 temperature difference, 210,
 216
normal
distribution, 245
 incidence, 35, 103
numerical aperture, 19

object at infinity, 53
off-axis collimator, 260
Ohm’s law, 136, 138, 173
OLEDs, 117
optical
 axis, 24, 36
 element, 19
 radiant power, 128
 radiation, 73
detectors, 127
 system, 21, 23, 48
 systems, 16, 19
 thickness, 71, 72
 transmission, 265
organic light-emitting diodes. See
 OLEDs
overlapping of orders, 230
passive sources, 6
Pauli exclusion principle, 176
PCTRAN®, 314
Peltier
 coefficient, 151
 effect, 152
phosphors, 115
photocathode, 181, 185
photoconductive, 7, 164
 detector, 169, 171, 173, 175
 gain, 172
 mode, 194
photodiode, 5
photoemission, 176
photoemissive, 7, 164
photoemissive detector, 182
photoemitter, 180
photographic film, 199, 200
photometric, 2
photometry, 191, 217
photomultiplier tubes, 89, 183
photon, 128
 D*, 133
 detectors, 127
 flux, 129
 irradiance, 170
 noise, 142
 radiance
 spectral, 90
 responsivity, 129
photopic response of the eye, 217
photovoltaic, 7, 164, 191
 cell, 165
 detector, 175, 185, 191, 192, 195, 198
 solar cell, 193
physical standards, 253
Planck, 5, 84
 constant, 89, 313
 equation, 84, 86, 89, 91, 92, 93
 expression for blackbody
 radiation, 84
 function, 77
plane angle, 13, 16, 17
p-n junction, 185, 187
point
 detector, 175
 source, 29, 30, 31, 34, 220, 222, 252, 310
polarization, 248
 sensitivity, 216
 states, 70
polarized, 102, 103
polished metal surfaces, 33
power
 gain, 136, 298
 generator, 192
 responsivity, 262
 spectrum, 134
precision, 243
pressure (Lorentzian), 110
primary standard, 254
principle of superposition, 37
projected
 area, 13, 32
 solid angle, 17, 18, 19, 20, 26
projection systems, 56
pure material, 62
pyrheliometer, 221
pyroelectric
 coefficient, 158, 160
 detector, 157, 159, 161
quantization noise, 143, 246
quantum efficiency, 176, 178, 195
quantum-well infrared
 photodetectors, 209
RA product, 133
radian, 13, 15
radiance, 24, 26, 27, 32, 52, 63, 314
 apparent, 52
 of the source, 223
 responsivity, 129
 spectral, 63, 87
radiant
 energy, 24
 exitance, 25, 26, 27, 38, 44
Index

flux, 61, 63
intensity, 25
power, 24, 25, 29, 36, 39
radiation
 contrast, 96, 97
 geometry, 30
radiative transfer, 36, 38
 basic equation, 58, 263
radiometer, 21, 215, 241
 optical system, 311
radiometric
 calibration, 17, 241
 configuration, 6, 251
 equation, 228
 instruments, 215, 228, 250
 measurements, 217
 system, 252
radiometry, 1, 24, 191, 211, 223, 248
Raman scattering, 69
random
 errors, 243
 noise, 244
 uncertainty, 249
range equation, 251, 252, 266
ray, 11
Rayleigh, 84
 scatter, 119
Rayleigh-Jeans, 93
 equation, 84, 92
 law, 92
RC
 bandpass filter, 300
 circuit, 130
 low-pass filter, 299
receiver, 18
reflectance, 47, 64, 70, 315
 factor, 65, 67
 spectral, 63, 78
reflecting chopper, 224
reflection, 61, 63, 83
reflective natural objects, 105
refractive
 collimator, 259
 elements, 109
index, 19, 85, 231, 239
resolving power, 229, 230, 238
responsible quantum efficiency, 131, 170
responsivity, 128, 132, 157
reverse saturation current, 189, 190, 191
reverse-bias mode, 194
Richardson equation, 181, 182
right circular cone, 18
root mean square, 130
root sum square, 249
rough aluminum, 75
scattering, 6
Schottky barrier, 198
secondary standard, 254
Seebeck
 coefficient, 151
 effect, 150
semiconductor
 detectors, 140
 photocathodes, 177
Seya-Namioka, 234
short-wave infrared, 209
shot noise, 139, 182, 196, 244
signal processing, 7
signal-to-noise ratio, 131, 149, 217, 244, 266, 297, 303
silicon
 amorphous, 199
 detector, 128
simple bandpass filter, 303
simple equation for transfer of radiant power, 263
single-element detectors, 127
Snell’s law, 12, 25
solar
cell, 192, 198, 219
 collectors
 flat-plate, 55
 constant, 28, 50
 irradiance, 49
 panels, 193
Index

spectrum, 121
zenith angle, 119, 314
solid angle, 15–17, 25, 66, 223
field of view, 265
source image, 21
spatial resolution, 202
specification sheet, 215
spectral
 absorptance, 69
 absorption coefficient, 71
 bandwidth, 216
 directional emissivity, 98
 emittance, 78, 102, 106
 linewidth, 251
 photon radiance, 90
 radiance, 63, 87, 250, 313
 blackbody, 88
 radiometer, 215
 reflectance, 63, 78
 response, 201
 of the eye, 8
 responsivity, 128, 130, 250
 sensitivity, 201
 transmittance, 62, 251
spectrometer, 22, 217, 230, 235
spectroradiometer, 217, 228, 241
specular, 61, 227, 316
 reflecting surfaces, 33
 reflection, 319
 reflectors, 58
 surfaces, 73
speed of light, 12
sphere coatings, 47
SPRITE detector, 209
standard, 254–255
 detector, 257
 source, 257
statistical analysis, 243
Stefan-Boltzmann constant, 84
Stefan-Boltzmann law, 89, 95
steradian, 15
stray light, 227, 228, 260
subtractive dispersion, 235
sun
 projected area, 51
sunglint, 313
sunlit scene, 52
surface
 normal, 13
 reflectance, 317
systematic
 error, 241, 247
 uncertainty, 249
systems
 analysis, 211
 engineering, 211
target, 96
temperature coefficient of
 resistance, 155
temperature fluctuation noise, 141
thermal, 7, 104, 127
 conductance, 141, 149
 detection of optical radiation, 147
 detector, 128, 141, 147, 312
 emission, 313
 fluctuation noise, 162
 infrared, 319
 noise, 135
 resistance, 147, 148
 time constant, 141, 148, 159
thermistors, 156
thermocouple radiation detectors, 153
thermoelectric
 detector, 150
 effect, 150
thermopile radiation detectors, 153
three-color CCDs, 207
throughput, 20, 229, 230, 239, 263
time constant, 130, 154
total emissivity, 98
traceability, 254
transmission, 5, 61, 62, 79
 loss, 40, 48, 53
 of the lens, 42
 of the optics, 223
transmittance, 70, 72, 315
total, 62
triboelectric noise, 142
tungsten lamps, 105, 258
tungsten-filament lamp, 105–106
tungsten-halogen lamp, 106–107
Twyman-Green, 237
type A errors, 243
type B errors, 241

Ulbricht, R., 5, 46
ultraviolet, 2
detector array, 208
uncertainty, 241, 244, 253
uncooled thermal-imaging devices, 210
uniform radiance source, 47
unit solid angle, 17
unpolarized light, 70

valence band, 168, 177
vector, 11
vignette, 41
vignetting, 57
visible, 2
voltage responsivity, 160

Wadsworth, 231, 234
wavefront, 11
Welsbach mantle, 109
white
diffuse panel, 261
noise, 134, 135, 146, 246, 297, 303
Wien, 84, 93
approximation, 93, 97
displacement law, 86
work function, 176
working standard, 254
Zener effect, 194
Zodiacal light, 121
James M. Palmer (1937-2007) was a research professor emeritus in the College of Optical Sciences, University of Arizona. He received his AB in physics from Grinnell College in 1959, and his MS and PhD degrees in optical sciences in 1973 and 1975, respectively, from the University of Arizona, specializing in radiometry and infrared systems. Prior to attending the University of Arizona, he worked in industrial positions at Hoffman Electronics Corporation and Centralab, Semiconductor Division of Globe Union, Inc. Over a career spanning more than 40 years, he authored or coauthored more than 60 technical papers on many aspects of radiometry and photometry, and he was named Fellow of SPIE in 2003. Other awards include a NASA Group Achievement award for his work on the Pioneer Venus Mission (1979), a Tau Beta Pi Teacher of the Year Award (1992), and a Non-Traditional Student Teaching Award from the University of Arizona (1993). He taught numerous short courses at SPIE conferences, CIE meetings, and conferences of the Optical Society of America. He served as a consultant on commercial and government projects. Dr. Palmer was a brilliant lecturer whose former students, worldwide, have expressed gratitude for the knowledge they gained under his tutelage.

Barbara G. Grant received her BA in mathematics from San Jose State University in 1983, and her MS in optical sciences from the University of Arizona in 1989, where her graduate research focused on the absolute radiometric calibration of spaceborne imaging sensors. She was subsequently employed at Lockheed Missiles and Space Company, Sunnyvale, California, where supported by excellent management, she pursued problems in infrared sensor calibration and postflight data analysis of electro-optical payloads. She also worked as a NASA contractor, overseeing integration and test of imager and sounder payloads on the GOES weather satellite, for which she received two NASA awards. She is the author of two book-length volumes of market research for process spectroscopy instruments. Since 1995, her consultancy, Lines and Lights Technology, has addressed problems in systems engineering, infrared imaging and data analysis, UV measurement, and spectroradiometry, among other areas.